csfever_v2 / csfever_v2.py
mlynatom's picture
Revert "Delete csfever_v2.py"
5d92619
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""CsFEVERv2 dataset"""
import csv
import json
import os
import datasets
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is aimed on Czech fact-checking task.
"""
#TODO
_CITATION = ""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"original": {"train": "./original/train.jsonl",
"dev" : "./original/dev.jsonl",
"test": "./original/test.jsonl"},
"f1": {"train": "./f1/train.jsonl",
"dev" : "./f1/dev.jsonl",
"test": "./f1/test.jsonl"},
"precision": {"train": "./precision/train.jsonl",
"dev" : "./precision/dev.jsonl",
"test": "./precision/test.jsonl"},
"07": {"train": "./07/train.jsonl",
"dev" : "./07/dev.jsonl",
"test": "./07/test.jsonl"},
"wiki_pages": "./wiki_pages/wiki_pages.jsonl",
"original_nli": {"train": "./original_nli/train.jsonl",
"dev" : "./original_nli/dev.jsonl",
"test": "./original_nli/test.jsonl"},
"f1_nli": {"train": "./f1_nli/train.jsonl",
"dev" : "./f1_nli/dev.jsonl",
"test": "./f1_nli/test.jsonl"},
"07_nli": {"train": "./07_nli/train.jsonl",
"dev" : "./07_nli/dev.jsonl",
"test": "./07_nli/test.jsonl"},
"precision_nli": {"train": "./precision_nli/train.jsonl",
"dev" : "./precision_nli/dev.jsonl",
"test": "./precision_nli/test.jsonl"},
}
_ORIGINAL_DESCRIPTION = ""
_NLI_NAMES = ["original_nli", "07_nli", "precision_nli", "f1_nli"]
#Name of the dataset usually matches the script name with CamelCase instead of snake_case
class CsFEVERv2(datasets.GeneratorBasedBuilder):
"""CsFEVERv2"""
VERSION = datasets.Version("1.1.0")
# This is an example of a dataset with multiple configurations.
# If you don't want/need to define several sub-sets in your dataset,
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
# If you need to make complex sub-parts in the datasets with configurable options
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
# BUILDER_CONFIG_CLASS = MyBuilderConfig
# You will be able to load one or the other configurations in the following list with
# data = datasets.load_dataset('my_dataset', 'first_domain')
# data = datasets.load_dataset('my_dataset', 'second_domain')
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="original",
version=VERSION,
description=_ORIGINAL_DESCRIPTION,
),
datasets.BuilderConfig(
name="f1",
version=VERSION,
description=_ORIGINAL_DESCRIPTION,
),
datasets.BuilderConfig(
name="precision",
version=VERSION,
description=_ORIGINAL_DESCRIPTION
),
datasets.BuilderConfig(
name="07",
version=VERSION,
description=_ORIGINAL_DESCRIPTION
),
datasets.BuilderConfig(
name="wiki_pages",
version=VERSION,
description=_ORIGINAL_DESCRIPTION
),
datasets.BuilderConfig(
name="original_nli",
version=VERSION,
description=_ORIGINAL_DESCRIPTION
),
datasets.BuilderConfig(
name="07_nli",
version=VERSION,
description=_ORIGINAL_DESCRIPTION
),
datasets.BuilderConfig(
name="f1_nli",
version=VERSION,
description=_ORIGINAL_DESCRIPTION
),
datasets.BuilderConfig(
name="precision_nli",
version=VERSION,
description=_ORIGINAL_DESCRIPTION
),
]
DEFAULT_CONFIG_NAME = "original" # It's not mandatory to have a default configuration. Just use one if it make sense.
def _info(self):
#This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
if self.config.name == "original": # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"id": datasets.Value("int32"),
"label": datasets.Value("string"),
"predicted_label": datasets.Value("string"),
"predicted_score": datasets.Value("float"),
"claim": datasets.Value("string"),
"evidence": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
# These are the features of your dataset like images, labels ...
}
)
elif self.config.name in _NLI_NAMES: # This is the name of the configuration selected in BUILDER_CONFIGS above
features = datasets.Features(
{
"id": datasets.Value("int32"),
"label": datasets.ClassLabel(num_classes=3, names=["SUPPORTS", "REFUTES", "NOT ENOUGH INFO"]),
"claim": datasets.Value("string"),
"evidence": datasets.Value("string"),
# These are the features of your dataset like images, labels ...
}
)
elif self.config.name == "wiki_pages":
features = datasets.Features(
{
"id": datasets.Value("int32"),
"revid": datasets.Value("int32"),
"url": datasets.Value("string"),
"title": datasets.Value("string"),
"text": datasets.Value("string"),
# These are the features of your dataset like images, labels ...
}
)
else: # This is an example to show how to have different features for "first_domain" and "second_domain"
features = datasets.Features(
{
"id": datasets.Value("int32"),
"label": datasets.Value("string"),
"claim": datasets.Value("string"),
"evidence": datasets.Sequence(datasets.Sequence(datasets.Value("string"))),
# These are the features of your dataset like images, labels ...
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features, # Here we define them above because they are different between the two configurations
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
# supervised_keys=("sentence", "label"),
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager):
# This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
urls = _URLS[self.config.name]
data_dir = dl_manager.download_and_extract(urls)
if self.config.name == "wiki_pages":
return [datasets.SplitGenerator(
name="wiki_pages",
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir,
"split": "wiki_pages",
},
)]
else:
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["train"],
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["dev"],
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
# These kwargs will be passed to _generate_examples
gen_kwargs={
"filepath": data_dir["test"],
"split": "test"
},
),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, filepath, split):
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data_point = json.loads(row)
if self.config.name == "original":
# Yields examples as (key, example) tuples
yield key, {
"id": data_point["id"],
"label": data_point["label"],
"predicted_label": data_point["predicted_label"],
"predicted_score": data_point["predicted_score"],
"claim": data_point["claim"],
"evidence": data_point["evidence"],
}
elif self.config.name in _NLI_NAMES:
yield key, {
"id": data_point["id"],
"label": data_point["label"],
"claim": data_point["claim"],
"evidence": data_point["evidence"],
}
elif self.config.name == "wiki_pages":
yield key, {
"id": data_point["id"],
"revid": data_point["revid"],
"url": data_point["url"],
"title": data_point["title"],
"text": data_point["text"],
}
else:
yield key, {
"id": data_point["id"],
"label": data_point["label"],
"claim": data_point["claim"],
"evidence": data_point["evidence"],
}