import os import datasets as ds import pytest @pytest.fixture def dataset_path() -> str: return "CAMERA.py" def test_load_dataset_without_lp_images( dataset_path: str, expected_train_num_rows: int = 12395, expected_val_num_rows: int = 3098, expected_test_num_rows: int = 872, ): dataset = ds.load_dataset(path=dataset_path, name="without-lp-images") assert dataset["train"].num_rows == expected_train_num_rows # type: ignore assert dataset["validation"].num_rows == expected_val_num_rows # type: ignore assert dataset["test"].num_rows == expected_test_num_rows # type: ignore @pytest.mark.skipif( bool(os.environ.get("CI", False)), reason="Because this test downloads a large data set, we will skip running it on CI.", ) def test_load_dataset_with_lp_images( dataset_path: str, expected_train_num_rows: int = 12395, expected_val_num_rows: int = 3098, expected_test_num_rows: int = 872, ): dataset = ds.load_dataset(path=dataset_path, name="with-lp-images") assert dataset["train"].num_rows == expected_train_num_rows # type: ignore assert dataset["validation"].num_rows == expected_val_num_rows # type: ignore assert dataset["test"].num_rows == expected_test_num_rows # type: ignore assert "lp_image" in dataset["train"].column_names