File size: 10,202 Bytes
fb189c1 3addfe5 fb189c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
---
annotations_creators:
- crowdsourced
language:
- ja
language_creators:
- found
license:
- cc-by-nc-sa-4.0
multilinguality:
- monolingual
pretty_name: CAMERA
size_categories: []
source_datasets:
- original
tags: []
task_categories:
- text-generation
task_ids: []
---
# Dataset Card for CAMERA 📷
[![CI](https://github.com/shunk031/huggingface-datasets_CAMERA/actions/workflows/ci.yaml/badge.svg)](https://github.com/shunk031/huggingface-datasets_CAMERA/actions/workflows/ci.yaml)
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** https://github.com/CyberAgentAILab/camera
- **Repository:** https://github.com/shunk031/huggingface-datasets_CAMERA
### Dataset Summary
From [the official README.md](https://github.com/CyberAgentAILab/camera#camera-dataset):
> CAMERA (CyberAgent Multimodal Evaluation for Ad Text GeneRAtion) is the Japanese ad text generation dataset. We hope that our dataset will be useful in research for realizing more advanced ad text generation models.
### Supported Tasks and Leaderboards
[More Information Needed]
#### Supported Tasks
[More Information Needed]
#### Leaderboard
[More Information Needed]
### Languages
The language data in CAMERA is in Japanese ([BCP-47 ja-JP](https://www.rfc-editor.org/info/bcp47)).
## Dataset Structure
### Data Instances
When loading a specific configuration, users has to append a version dependent suffix:
#### without-lp-images
```python
from datasets import load_dataset
dataset = load_dataset("shunk031/CAMERA", name="without-lp-images")
print(dataset)
# DatasetDict({
# train: Dataset({
# features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation'],
# num_rows: 12395
# })
# validation: Dataset({
# features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation'],
# num_rows: 3098
# })
# test: Dataset({
# features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation'],
# num_rows: 872
# })
# })
```
An example of the CAMERA (w/o LP images) dataset looks as follows:
```json
{
"asset_id": 13861,
"kw": "仙台 ホテル",
"lp_meta_description": "仙台のホテルや旅館をお探しなら楽天トラベルへ!楽天ポイントが使えて、貯まって、とってもお得な宿泊予約サイトです。さらに割引クーポンも使える!国内ツアー・航空券・レンタカー・バス予約も!",
"title_org": "仙台市のホテル",
"title_ne1": "",
"title_ne2": "",
"title_ne3": "",
"domain": "",
"parsed_full_text_annotation": {
"text": [
"trivago",
"Oops...AccessDenied 可",
"Youarenotallowedtoviewthispage!Ifyouthinkthisisanerror,pleasecontacttrivago.",
"Errorcode:0.3c99e86e.1672026945.25ba640YourIP:240d:1a:4d8:2800:b9b0:ea86:2087:d141AffectedURL:https://www.trivago.jp/ja/odr/%E8%BB%92", "%E4%BB%99%E5%8F%B0-%E5%9B%BD%E5%86%85?search=20072325",
"Backtotrivago"
],
"xmax": [
653,
838,
765,
773,
815,
649
],
"xmin": [
547,
357,
433,
420,
378,
550
],
"ymax": [
47,
390,
475,
558,
598,
663
],
"ymin": [
18,
198,
439,
504,
566,
651
]
}
}
```
#### with-lp-images
```python
from datasets import load_dataset
dataset = load_dataset("shunk031/CAMERA", name="with-lp-images")
print(dataset)
# DatasetDict({
# train: Dataset({
# features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation', 'lp_image'],
# num_rows: 12395
# })
# validation: Dataset({
# features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation', 'lp_image'],
# num_rows: 3098
# })
# test: Dataset({
# features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation', 'lp_image'],
# num_rows: 872
# })
# })
```
An example of the CAMERA (w/ LP images) dataset looks as follows:
```json
{
"asset_id": 13861,
"kw": "仙台 ホテル",
"lp_meta_description": "仙台のホテルや旅館をお探しなら楽天トラベルへ!楽天ポイントが使えて、貯まって、とってもお得な宿泊予約サイトです。さらに割引クーポンも使える!国内ツアー・航空券・レンタカー・バス予約も!",
"title_org": "仙台市のホテル",
"title_ne1": "",
"title_ne2": "",
"title_ne3": "",
"domain": "",
"parsed_full_text_annotation": {
"text": [
"trivago",
"Oops...AccessDenied 可",
"Youarenotallowedtoviewthispage!Ifyouthinkthisisanerror,pleasecontacttrivago.",
"Errorcode:0.3c99e86e.1672026945.25ba640YourIP:240d:1a:4d8:2800:b9b0:ea86:2087:d141AffectedURL:https://www.trivago.jp/ja/odr/%E8%BB%92", "%E4%BB%99%E5%8F%B0-%E5%9B%BD%E5%86%85?search=20072325",
"Backtotrivago"
],
"xmax": [
653,
838,
765,
773,
815,
649
],
"xmin": [
547,
357,
433,
420,
378,
550
],
"ymax": [
47,
390,
475,
558,
598,
663
],
"ymin": [
18,
198,
439,
504,
566,
651
]
},
"lp_image": <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=1200x680 at 0x7F8513446B20>
}
```
### Data Fields
#### without-lp-images
- `asset_id`: ids (associated with LP images)
- `kw`: search keyword
- `lp_meta_description`: meta description extracted from LP (i.e., LP Text)
- `title_org`: ad text (original gold reference)
- `title_ne{1-3}`: ad text (additonal gold references for multi-reference evaluation)
- `domain`: industry domain (HR, EC, Fin, Edu) for industry-wise evaluation
- `parsed_full_text_annotation`: OCR results for LP images
#### with-lp-images
- `asset_id`: ids (associated with LP images)
- `kw`: search keyword
- `lp_meta_description`: meta description extracted from LP (i.e., LP Text)
- `title_org`: ad text (original gold reference)
- `title_ne{1-3}`: ad text (additional gold references for multi-reference evaluation)
- `domain`: industry domain (HR, EC, Fin, Edu) for industry-wise evaluation
- `parsed_full_text_annotation`: OCR results for LP images
- `lp_image`: Landing page (LP) image
### Data Splits
From [the official paper](https://www.anlp.jp/proceedings/annual_meeting/2023/pdf_dir/H11-4.pdf):
| Split | # of data | # of reference ad text | industry domain label |
|-------|----------:|-----------------------:|:---------------------:|
| Train | 12,395 | 1 | - |
| Valid | 3,098 | 1 | - |
| Test | 869 | 4 | ✔ |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
[More Information Needed]
### Dataset Curators
[More Information Needed]
### Licensing Information
> This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
### Citation Information
```bibtex
@inproceedings{mita-et-al:nlp2023,
author = "三田 雅人 and 村上 聡一朗 and 張 培楠",
title = "広告文生成タスクの規定とベンチマーク構築",
booktitle = "言語処理学会 第 29 回年次大会",
year = 2023,
}
```
### Contributions
Thanks to [Masato Mita](https://github.com/chemicaltree), [Soichiro Murakami](https://github.com/ichiroex), and [Peinan Zhang](https://github.com/peinan) for creating this dataset.
|