Datasets:

Languages:
Japanese
License:
File size: 10,202 Bytes
fb189c1
 
 
 
3addfe5
fb189c1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
---
annotations_creators:
- crowdsourced
language:
- ja
language_creators:
- found
license:
- cc-by-nc-sa-4.0
multilinguality:
- monolingual
pretty_name: CAMERA
size_categories: []
source_datasets:
- original
tags: []
task_categories:
- text-generation
task_ids: []
---

# Dataset Card for CAMERA 📷

[![CI](https://github.com/shunk031/huggingface-datasets_CAMERA/actions/workflows/ci.yaml/badge.svg)](https://github.com/shunk031/huggingface-datasets_CAMERA/actions/workflows/ci.yaml)

## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** https://github.com/CyberAgentAILab/camera
- **Repository:** https://github.com/shunk031/huggingface-datasets_CAMERA

### Dataset Summary

From [the official README.md](https://github.com/CyberAgentAILab/camera#camera-dataset):

> CAMERA (CyberAgent Multimodal Evaluation for Ad Text GeneRAtion) is the Japanese ad text generation dataset. We hope that our dataset will be useful in research for realizing more advanced ad text generation models.

### Supported Tasks and Leaderboards

[More Information Needed]

#### Supported Tasks

[More Information Needed]

#### Leaderboard

[More Information Needed]

### Languages

The language data in CAMERA is in Japanese ([BCP-47 ja-JP](https://www.rfc-editor.org/info/bcp47)).

## Dataset Structure

### Data Instances

When loading a specific configuration, users has to append a version dependent suffix:

#### without-lp-images

```python
from datasets import load_dataset

dataset = load_dataset("shunk031/CAMERA", name="without-lp-images")

print(dataset)
# DatasetDict({
#     train: Dataset({
#         features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation'],
#         num_rows: 12395
#     })
#     validation: Dataset({
#         features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation'],
#         num_rows: 3098
#     })
#     test: Dataset({
#         features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation'],
#         num_rows: 872
#     })
# })
```

An example of the CAMERA (w/o LP images) dataset looks as follows:

```json
{
    "asset_id": 13861, 
    "kw": "仙台 ホテル", 
    "lp_meta_description": "仙台のホテルや旅館をお探しなら楽天トラベルへ!楽天ポイントが使えて、貯まって、とってもお得な宿泊予約サイトです。さらに割引クーポンも使える!国内ツアー・航空券・レンタカー・バス予約も!", 
    "title_org": "仙台市のホテル", 
    "title_ne1": "", 
    "title_ne2": "", 
    "title_ne3": "", 
    "domain": "", 
    "parsed_full_text_annotation": {
        "text": [
            "trivago", 
            "Oops...AccessDenied 可", 
            "Youarenotallowedtoviewthispage!Ifyouthinkthisisanerror,pleasecontacttrivago.", 
            "Errorcode:0.3c99e86e.1672026945.25ba640YourIP:240d:1a:4d8:2800:b9b0:ea86:2087:d141AffectedURL:https://www.trivago.jp/ja/odr/%E8%BB%92", "%E4%BB%99%E5%8F%B0-%E5%9B%BD%E5%86%85?search=20072325", 
            "Backtotrivago"
        ], 
        "xmax": [
            653, 
            838, 
            765, 
            773, 
            815, 
            649
        ], 
        "xmin": [
            547, 
            357, 
            433, 
            420, 
            378, 
            550
        ], 
        "ymax": [
            47, 
            390, 
            475, 
            558, 
            598, 
            663
        ], 
        "ymin": [
            18, 
            198, 
            439, 
            504, 
            566, 
            651
        ]
    }
}
```

#### with-lp-images

```python
from datasets import load_dataset

dataset = load_dataset("shunk031/CAMERA", name="with-lp-images")

print(dataset)
# DatasetDict({
#     train: Dataset({
#         features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation', 'lp_image'],
#         num_rows: 12395
#     })
#     validation: Dataset({
#         features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation', 'lp_image'],
#         num_rows: 3098
#     })
#     test: Dataset({
#         features: ['asset_id', 'kw', 'lp_meta_description', 'title_org', 'title_ne1', 'title_ne2', 'title_ne3', 'domain', 'parsed_full_text_annotation', 'lp_image'],
#         num_rows: 872
#     })
# })
```

An example of the CAMERA (w/ LP images) dataset looks as follows:

```json
{
    "asset_id": 13861, 
    "kw": "仙台 ホテル", 
    "lp_meta_description": "仙台のホテルや旅館をお探しなら楽天トラベルへ!楽天ポイントが使えて、貯まって、とってもお得な宿泊予約サイトです。さらに割引クーポンも使える!国内ツアー・航空券・レンタカー・バス予約も!", 
    "title_org": "仙台市のホテル", 
    "title_ne1": "", 
    "title_ne2": "", 
    "title_ne3": "", 
    "domain": "", 
    "parsed_full_text_annotation": {
        "text": [
            "trivago", 
            "Oops...AccessDenied 可", 
            "Youarenotallowedtoviewthispage!Ifyouthinkthisisanerror,pleasecontacttrivago.", 
            "Errorcode:0.3c99e86e.1672026945.25ba640YourIP:240d:1a:4d8:2800:b9b0:ea86:2087:d141AffectedURL:https://www.trivago.jp/ja/odr/%E8%BB%92", "%E4%BB%99%E5%8F%B0-%E5%9B%BD%E5%86%85?search=20072325", 
            "Backtotrivago"
        ], 
        "xmax": [
            653, 
            838, 
            765, 
            773, 
            815, 
            649
        ], 
        "xmin": [
            547, 
            357, 
            433, 
            420, 
            378, 
            550
        ], 
        "ymax": [
            47, 
            390, 
            475, 
            558, 
            598, 
            663
        ], 
        "ymin": [
            18, 
            198, 
            439, 
            504, 
            566, 
            651
        ]
    },
    "lp_image": <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=1200x680 at 0x7F8513446B20>
}
```

### Data Fields

#### without-lp-images

- `asset_id`: ids (associated with LP images)
- `kw`: search keyword
- `lp_meta_description`: meta description extracted from LP (i.e., LP Text)
- `title_org`: ad text (original gold reference)
- `title_ne{1-3}`: ad text (additonal gold references for multi-reference evaluation)
- `domain`: industry domain (HR, EC, Fin, Edu) for industry-wise evaluation
- `parsed_full_text_annotation`: OCR results for LP images

#### with-lp-images

- `asset_id`: ids (associated with LP images)
- `kw`: search keyword
- `lp_meta_description`: meta description extracted from LP (i.e., LP Text)
- `title_org`: ad text (original gold reference)
- `title_ne{1-3}`: ad text (additional gold references for multi-reference evaluation)
- `domain`: industry domain (HR, EC, Fin, Edu) for industry-wise evaluation
- `parsed_full_text_annotation`: OCR results for LP images
- `lp_image`: Landing page (LP) image

### Data Splits

From [the official paper](https://www.anlp.jp/proceedings/annual_meeting/2023/pdf_dir/H11-4.pdf):

| Split | # of data | # of reference ad text | industry domain label |
|-------|----------:|-----------------------:|:---------------------:|
| Train | 12,395    | 1                      | -                     |
| Valid | 3,098     | 1                      | -                     |
| Test  | 869       | 4                      | ✔                     |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

[More Information Needed]

### Dataset Curators

[More Information Needed]

### Licensing Information

> This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

### Citation Information

```bibtex
@inproceedings{mita-et-al:nlp2023,
    author =    "三田 雅人 and 村上 聡一朗 and 張 培楠",
    title =	    "広告文生成タスクの規定とベンチマーク構築",
    booktitle = "言語処理学会 第 29 回年次大会",
    year =      2023,
}
```

### Contributions

Thanks to [Masato Mita](https://github.com/chemicaltree), [Soichiro Murakami](https://github.com/ichiroex), and [Peinan Zhang](https://github.com/peinan) for creating this dataset.