import argparse import subprocess import torch def process_checkpoint(in_file, out_file): checkpoint = torch.load(in_file, map_location="cpu") # only keep `epoch` and `state_dict`/`state_dict_ema`` for smaller file size ckpt_keys = list(checkpoint.keys()) save_keys = ["meta", "epoch"] if "state_dict_ema" in ckpt_keys: save_keys.append("state_dict_ema") else: save_keys.append("state_dict") for k in ckpt_keys: if k not in save_keys: print(f"Key `{k}` will be removed because it is not in save_keys.") checkpoint.pop(k, None) # if it is necessary to remove some sensitive data in checkpoint['meta'], # add the code here. torch.save(checkpoint, out_file) sha = subprocess.check_output(["sha256sum", out_file]).decode() if out_file.endswith(".pth"): out_file_name = out_file[:-4] else: out_file_name = out_file final_file = out_file_name + f"_{sha[:8]}.pth" subprocess.Popen(["mv", out_file, final_file]) print(f"The published model is saved at {final_file}.") if __name__ == "__main__": parser = argparse.ArgumentParser(description="Process a checkpoint to be published") parser.add_argument("in_file", help="input checkpoint filename") parser.add_argument("out_file", help="output checkpoint filename") args = parser.parse_args() process_checkpoint(args.in_file, args.out_file)