dataset: dataset: FMNIST image_size: 32 channels: 1 sample: method: ${method} model_path: YOUR PATH of pretrained ckpt image_output_path: out batch_size: 5 total_num: 100 work_dir: ${hydra:runtime.cwd} method: F-PNDM sample_speed: 50 seed: 42 model: _target_: src.model.scoresde.ddpm.DDPM nf: 128 ch_mult: - 1 - 2 - 2 - 2 num_res_blocks: 2 attn_resolutions: - 16 dropout: 0.1 num_channels: 1 resamp_with_conv: true image_size: 32 conditional: true centered: true scheduler: _target_: src.trainer.scheduler.Schedule beta_start: 0.0001 beta_end: 0.02 diffusion_step: 1000 train: optim_cfg: weight_decay: 0.0 optimizer: adam lr: 0.0002 beta1: 0.9 amsgrad: false eps: 1.0e-08 grad_clip: 1.0 epochs: 100 ema_rate: 0.9999 use_ema: true batch_size: 1024 num_workers: 6 save_path: ./save_ckpt