add support for loading features
Browse files- README.md +31 -1
- cartoonset.py +108 -16
- dataset_infos.json +452 -0
README.md
CHANGED
@@ -42,7 +42,7 @@ import datasets
|
|
42 |
from io import BytesIO
|
43 |
from PIL import Image
|
44 |
|
45 |
-
ds = datasets.load_dataset("cgarciae/cartoonset", "10k")
|
46 |
|
47 |
def process_fn(sample):
|
48 |
img = Image.open(BytesIO(sample["img_bytes"]))
|
@@ -74,6 +74,36 @@ def process_fn(sample):
|
|
74 |
ds = ds.map(process_fn)
|
75 |
```
|
76 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
## Dataset Structure
|
78 |
### Data Instances
|
79 |
A sample from the training set is provided below:
|
|
|
42 |
from io import BytesIO
|
43 |
from PIL import Image
|
44 |
|
45 |
+
ds = datasets.load_dataset("cgarciae/cartoonset", "10k")
|
46 |
|
47 |
def process_fn(sample):
|
48 |
img = Image.open(BytesIO(sample["img_bytes"]))
|
|
|
74 |
ds = ds.map(process_fn)
|
75 |
```
|
76 |
|
77 |
+
**Additional features:**
|
78 |
+
You can also access the features that generated each sample e.g:
|
79 |
+
|
80 |
+
```python
|
81 |
+
ds = datasets.load_dataset("cgarciae/cartoonset", "10k+features") # or "100k+features"
|
82 |
+
```
|
83 |
+
|
84 |
+
Apart from `img_bytes` these configurations add a total of 18 * 2 additional `int` features, these come in `{feature}`, `{feature}_num_categories` pairs where `num_categories` indicates the number of categories for that feature:
|
85 |
+
|
86 |
+
```
|
87 |
+
eye_angle, eye_angle_num_categories
|
88 |
+
eye_lashes, eye_lashes_num_categories
|
89 |
+
eye_lid, eye_lid_num_categories
|
90 |
+
chin_length, chin_length_num_categories
|
91 |
+
eyebrow_weight, eyebrow_weight_num_categories
|
92 |
+
eyebrow_shape, eyebrow_shape_num_categories
|
93 |
+
eyebrow_thickness, eyebrow_thickness_num_categories
|
94 |
+
face_shape, face_shape_num_categories
|
95 |
+
facial_hair, facial_hair_num_categories
|
96 |
+
hair, hair_num_categories
|
97 |
+
eye_color, eye_color_num_categories
|
98 |
+
face_color, face_color_num_categories
|
99 |
+
hair_color, hair_color_num_categories
|
100 |
+
glasses, glasses_num_categories
|
101 |
+
glasses_color, glasses_color_num_categories
|
102 |
+
eye_slant, eye_slant_num_categories
|
103 |
+
eyebrow_width, eyebrow_width_num_categories
|
104 |
+
eye_eyebrow_distance, eye_eyebrow_distance_num_categories
|
105 |
+
```
|
106 |
+
|
107 |
## Dataset Structure
|
108 |
### Data Instances
|
109 |
A sample from the training set is provided below:
|
cartoonset.py
CHANGED
@@ -1,15 +1,14 @@
|
|
1 |
"""Cartoonset-10k Data Set"""
|
2 |
|
3 |
|
4 |
-
import
|
|
|
5 |
|
6 |
-
import numpy as np
|
7 |
-
import PIL.Image
|
8 |
import tarfile
|
|
|
9 |
|
10 |
|
11 |
import datasets
|
12 |
-
from datasets.tasks import ImageClassification
|
13 |
|
14 |
|
15 |
_CITATION = r"""
|
@@ -53,26 +52,75 @@ class Cartoonset(datasets.GeneratorBasedBuilder):
|
|
53 |
datasets.BuilderConfig(
|
54 |
name="10k",
|
55 |
version=datasets.Version("1.0.0", ""),
|
56 |
-
description="Loads the Cartoonset-10k Data Set",
|
|
|
|
|
|
|
|
|
|
|
57 |
),
|
58 |
datasets.BuilderConfig(
|
59 |
name="100k",
|
60 |
version=datasets.Version("1.0.0", ""),
|
61 |
-
description="Loads the Cartoonset-100k Data Set",
|
|
|
|
|
|
|
|
|
|
|
62 |
),
|
63 |
]
|
64 |
|
65 |
DEFAULT_CONFIG_NAME = "10k"
|
66 |
|
67 |
def _info(self):
|
68 |
-
|
69 |
-
|
70 |
-
|
|
|
71 |
{
|
72 |
-
|
73 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
}
|
75 |
-
)
|
|
|
|
|
|
|
|
|
76 |
supervised_keys=("img_bytes",),
|
77 |
homepage="https://www.cs.toronto.edu/~kriz/cifar.html",
|
78 |
citation=_CITATION,
|
@@ -80,7 +128,7 @@ class Cartoonset(datasets.GeneratorBasedBuilder):
|
|
80 |
|
81 |
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
82 |
|
83 |
-
url = _DATA_URLS[self.config.name]
|
84 |
archive = dl_manager.download(url)
|
85 |
|
86 |
return [
|
@@ -96,13 +144,57 @@ class Cartoonset(datasets.GeneratorBasedBuilder):
|
|
96 |
def _generate_examples(self, files, split):
|
97 |
"""This function returns the examples in the raw (text) form."""
|
98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
path: str
|
100 |
file_obj: tarfile.ExFileObject
|
|
|
101 |
for path, file_obj in files:
|
|
|
102 |
|
103 |
if path.endswith(".png"):
|
104 |
image = file_obj.read()
|
105 |
|
106 |
-
yield
|
107 |
-
|
108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
"""Cartoonset-10k Data Set"""
|
2 |
|
3 |
|
4 |
+
from io import BytesIO
|
5 |
+
from typing import Optional
|
6 |
|
|
|
|
|
7 |
import tarfile
|
8 |
+
import pandas as pd
|
9 |
|
10 |
|
11 |
import datasets
|
|
|
12 |
|
13 |
|
14 |
_CITATION = r"""
|
|
|
52 |
datasets.BuilderConfig(
|
53 |
name="10k",
|
54 |
version=datasets.Version("1.0.0", ""),
|
55 |
+
description="Loads the Cartoonset-10k Data Set (images only).",
|
56 |
+
),
|
57 |
+
datasets.BuilderConfig(
|
58 |
+
name="10k+features",
|
59 |
+
version=datasets.Version("1.0.0", ""),
|
60 |
+
description="Loads the Cartoonset-10k Data Set (images and attributes).",
|
61 |
),
|
62 |
datasets.BuilderConfig(
|
63 |
name="100k",
|
64 |
version=datasets.Version("1.0.0", ""),
|
65 |
+
description="Loads the Cartoonset-100k Data Set (images only).",
|
66 |
+
),
|
67 |
+
datasets.BuilderConfig(
|
68 |
+
name="100k+features",
|
69 |
+
version=datasets.Version("1.0.0", ""),
|
70 |
+
description="Loads the Cartoonset-100k Data Set (images and attributes).",
|
71 |
),
|
72 |
]
|
73 |
|
74 |
DEFAULT_CONFIG_NAME = "10k"
|
75 |
|
76 |
def _info(self):
|
77 |
+
features = {"img_bytes": datasets.Value("binary")}
|
78 |
+
|
79 |
+
if self.config.name.endswith("+features"):
|
80 |
+
features.update(
|
81 |
{
|
82 |
+
"eye_angle": datasets.Value("int32"),
|
83 |
+
"eye_angle_num_categories": datasets.Value("int32"),
|
84 |
+
"eye_lashes": datasets.Value("int32"),
|
85 |
+
"eye_lashes_num_categories": datasets.Value("int32"),
|
86 |
+
"eye_lid": datasets.Value("int32"),
|
87 |
+
"eye_lid_num_categories": datasets.Value("int32"),
|
88 |
+
"chin_length": datasets.Value("int32"),
|
89 |
+
"chin_length_num_categories": datasets.Value("int32"),
|
90 |
+
"eyebrow_weight": datasets.Value("int32"),
|
91 |
+
"eyebrow_weight_num_categories": datasets.Value("int32"),
|
92 |
+
"eyebrow_shape": datasets.Value("int32"),
|
93 |
+
"eyebrow_shape_num_categories": datasets.Value("int32"),
|
94 |
+
"eyebrow_thickness": datasets.Value("int32"),
|
95 |
+
"eyebrow_thickness_num_categories": datasets.Value("int32"),
|
96 |
+
"face_shape": datasets.Value("int32"),
|
97 |
+
"face_shape_num_categories": datasets.Value("int32"),
|
98 |
+
"facial_hair": datasets.Value("int32"),
|
99 |
+
"facial_hair_num_categories": datasets.Value("int32"),
|
100 |
+
"hair": datasets.Value("int32"),
|
101 |
+
"hair_num_categories": datasets.Value("int32"),
|
102 |
+
"eye_color": datasets.Value("int32"),
|
103 |
+
"eye_color_num_categories": datasets.Value("int32"),
|
104 |
+
"face_color": datasets.Value("int32"),
|
105 |
+
"face_color_num_categories": datasets.Value("int32"),
|
106 |
+
"hair_color": datasets.Value("int32"),
|
107 |
+
"hair_color_num_categories": datasets.Value("int32"),
|
108 |
+
"glasses": datasets.Value("int32"),
|
109 |
+
"glasses_num_categories": datasets.Value("int32"),
|
110 |
+
"glasses_color": datasets.Value("int32"),
|
111 |
+
"glasses_color_num_categories": datasets.Value("int32"),
|
112 |
+
"eye_slant": datasets.Value("int32"),
|
113 |
+
"eye_slant_num_categories": datasets.Value("int32"),
|
114 |
+
"eyebrow_width": datasets.Value("int32"),
|
115 |
+
"eyebrow_width_num_categories": datasets.Value("int32"),
|
116 |
+
"eye_eyebrow_distance": datasets.Value("int32"),
|
117 |
+
"eye_eyebrow_distance_num_categories": datasets.Value("int32"),
|
118 |
}
|
119 |
+
)
|
120 |
+
|
121 |
+
return datasets.DatasetInfo(
|
122 |
+
description=_DESCRIPTION,
|
123 |
+
features=datasets.Features(features),
|
124 |
supervised_keys=("img_bytes",),
|
125 |
homepage="https://www.cs.toronto.edu/~kriz/cifar.html",
|
126 |
citation=_CITATION,
|
|
|
128 |
|
129 |
def _split_generators(self, dl_manager: datasets.DownloadManager):
|
130 |
|
131 |
+
url = _DATA_URLS[self.config.name.replace("+features", "")]
|
132 |
archive = dl_manager.download(url)
|
133 |
|
134 |
return [
|
|
|
144 |
def _generate_examples(self, files, split):
|
145 |
"""This function returns the examples in the raw (text) form."""
|
146 |
|
147 |
+
if self.config.name.endswith("+features"):
|
148 |
+
return self._generate_examples_with_features(files, split)
|
149 |
+
else:
|
150 |
+
return self._generate_examples_without_features(files, split)
|
151 |
+
|
152 |
+
def _generate_examples_without_features(self, files, split):
|
153 |
path: str
|
154 |
file_obj: tarfile.ExFileObject
|
155 |
+
root: str
|
156 |
for path, file_obj in files:
|
157 |
+
root = path[:-4]
|
158 |
|
159 |
if path.endswith(".png"):
|
160 |
image = file_obj.read()
|
161 |
|
162 |
+
yield root, {"img_bytes": image}
|
163 |
+
|
164 |
+
def _generate_examples_with_features(self, files, split):
|
165 |
+
path: str
|
166 |
+
file_obj: tarfile.ExFileObject
|
167 |
+
outputs = {}
|
168 |
+
root: Optional[str] = None
|
169 |
+
for path, file_obj in files:
|
170 |
+
root = path[:-4]
|
171 |
+
|
172 |
+
if root not in outputs:
|
173 |
+
outputs[root] = {}
|
174 |
+
|
175 |
+
current_output = outputs[root]
|
176 |
+
|
177 |
+
if path.endswith(".png"):
|
178 |
+
image = file_obj.read()
|
179 |
+
|
180 |
+
current_output["img_bytes"] = image
|
181 |
+
else:
|
182 |
+
df = pd.read_csv(
|
183 |
+
BytesIO(file_obj.read()),
|
184 |
+
header=None,
|
185 |
+
names=["feature", "value", "num_categories"],
|
186 |
+
)
|
187 |
+
|
188 |
+
for index, row in df.iterrows():
|
189 |
+
current_output[row.feature] = row.value
|
190 |
+
current_output[f"{row.feature}_num_categories"] = row.num_categories
|
191 |
+
|
192 |
+
if "img_bytes" in current_output and len(current_output) > 1:
|
193 |
+
yield root, current_output
|
194 |
+
del outputs[root]
|
195 |
+
root = None
|
196 |
+
|
197 |
+
if len(outputs) > 0:
|
198 |
+
raise ValueError(
|
199 |
+
f"Unable to extract the following samples: {list(outputs)}"
|
200 |
+
)
|
dataset_infos.json
CHANGED
@@ -90,5 +90,457 @@
|
|
90 |
"post_processing_size": null,
|
91 |
"dataset_size": 4889166989,
|
92 |
"size_in_bytes": 9655609025
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
}
|
94 |
}
|
|
|
90 |
"post_processing_size": null,
|
91 |
"dataset_size": 4889166989,
|
92 |
"size_in_bytes": 9655609025
|
93 |
+
},
|
94 |
+
"10k+features": {
|
95 |
+
"description": "Cartoon Set is a collection of random, 2D cartoon avatar images. The cartoons vary in 10 artwork \ncategories, 4 color categories, and 4 proportion categories, with a total of ~1013 possible \ncombinations. We provide sets of 10k and 100k randomly chosen cartoons and labeled attributes. \n",
|
96 |
+
"citation": "\n@article{DBLP:journals/corr/abs-1711-05139,\n author = {Amelie Royer and\n Konstantinos Bousmalis and\n Stephan Gouws and\n Fred Bertsch and\n Inbar Mosseri and\n Forrester Cole and\n Kevin Murphy},\n title = {{XGAN:} Unsupervised Image-to-Image Translation for many-to-many Mappings},\n journal = {CoRR},\n volume = {abs/1711.05139},\n year = {2017},\n url = {http://arxiv.org/abs/1711.05139},\n eprinttype = {arXiv},\n eprint = {1711.05139},\n timestamp = {Mon, 13 Aug 2018 16:47:38 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-1711-05139.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n",
|
97 |
+
"homepage": "https://www.cs.toronto.edu/~kriz/cifar.html",
|
98 |
+
"license": "",
|
99 |
+
"features": {
|
100 |
+
"img_bytes": {
|
101 |
+
"dtype": "binary",
|
102 |
+
"id": null,
|
103 |
+
"_type": "Value"
|
104 |
+
},
|
105 |
+
"eye_angle": {
|
106 |
+
"dtype": "int32",
|
107 |
+
"id": null,
|
108 |
+
"_type": "Value"
|
109 |
+
},
|
110 |
+
"eye_angle_num_categories": {
|
111 |
+
"dtype": "int32",
|
112 |
+
"id": null,
|
113 |
+
"_type": "Value"
|
114 |
+
},
|
115 |
+
"eye_lashes": {
|
116 |
+
"dtype": "int32",
|
117 |
+
"id": null,
|
118 |
+
"_type": "Value"
|
119 |
+
},
|
120 |
+
"eye_lashes_num_categories": {
|
121 |
+
"dtype": "int32",
|
122 |
+
"id": null,
|
123 |
+
"_type": "Value"
|
124 |
+
},
|
125 |
+
"eye_lid": {
|
126 |
+
"dtype": "int32",
|
127 |
+
"id": null,
|
128 |
+
"_type": "Value"
|
129 |
+
},
|
130 |
+
"eye_lid_num_categories": {
|
131 |
+
"dtype": "int32",
|
132 |
+
"id": null,
|
133 |
+
"_type": "Value"
|
134 |
+
},
|
135 |
+
"chin_length": {
|
136 |
+
"dtype": "int32",
|
137 |
+
"id": null,
|
138 |
+
"_type": "Value"
|
139 |
+
},
|
140 |
+
"chin_length_num_categories": {
|
141 |
+
"dtype": "int32",
|
142 |
+
"id": null,
|
143 |
+
"_type": "Value"
|
144 |
+
},
|
145 |
+
"eyebrow_weight": {
|
146 |
+
"dtype": "int32",
|
147 |
+
"id": null,
|
148 |
+
"_type": "Value"
|
149 |
+
},
|
150 |
+
"eyebrow_weight_num_categories": {
|
151 |
+
"dtype": "int32",
|
152 |
+
"id": null,
|
153 |
+
"_type": "Value"
|
154 |
+
},
|
155 |
+
"eyebrow_shape": {
|
156 |
+
"dtype": "int32",
|
157 |
+
"id": null,
|
158 |
+
"_type": "Value"
|
159 |
+
},
|
160 |
+
"eyebrow_shape_num_categories": {
|
161 |
+
"dtype": "int32",
|
162 |
+
"id": null,
|
163 |
+
"_type": "Value"
|
164 |
+
},
|
165 |
+
"eyebrow_thickness": {
|
166 |
+
"dtype": "int32",
|
167 |
+
"id": null,
|
168 |
+
"_type": "Value"
|
169 |
+
},
|
170 |
+
"eyebrow_thickness_num_categories": {
|
171 |
+
"dtype": "int32",
|
172 |
+
"id": null,
|
173 |
+
"_type": "Value"
|
174 |
+
},
|
175 |
+
"face_shape": {
|
176 |
+
"dtype": "int32",
|
177 |
+
"id": null,
|
178 |
+
"_type": "Value"
|
179 |
+
},
|
180 |
+
"face_shape_num_categories": {
|
181 |
+
"dtype": "int32",
|
182 |
+
"id": null,
|
183 |
+
"_type": "Value"
|
184 |
+
},
|
185 |
+
"facial_hair": {
|
186 |
+
"dtype": "int32",
|
187 |
+
"id": null,
|
188 |
+
"_type": "Value"
|
189 |
+
},
|
190 |
+
"facial_hair_num_categories": {
|
191 |
+
"dtype": "int32",
|
192 |
+
"id": null,
|
193 |
+
"_type": "Value"
|
194 |
+
},
|
195 |
+
"hair": {
|
196 |
+
"dtype": "int32",
|
197 |
+
"id": null,
|
198 |
+
"_type": "Value"
|
199 |
+
},
|
200 |
+
"hair_num_categories": {
|
201 |
+
"dtype": "int32",
|
202 |
+
"id": null,
|
203 |
+
"_type": "Value"
|
204 |
+
},
|
205 |
+
"eye_color": {
|
206 |
+
"dtype": "int32",
|
207 |
+
"id": null,
|
208 |
+
"_type": "Value"
|
209 |
+
},
|
210 |
+
"eye_color_num_categories": {
|
211 |
+
"dtype": "int32",
|
212 |
+
"id": null,
|
213 |
+
"_type": "Value"
|
214 |
+
},
|
215 |
+
"face_color": {
|
216 |
+
"dtype": "int32",
|
217 |
+
"id": null,
|
218 |
+
"_type": "Value"
|
219 |
+
},
|
220 |
+
"face_color_num_categories": {
|
221 |
+
"dtype": "int32",
|
222 |
+
"id": null,
|
223 |
+
"_type": "Value"
|
224 |
+
},
|
225 |
+
"hair_color": {
|
226 |
+
"dtype": "int32",
|
227 |
+
"id": null,
|
228 |
+
"_type": "Value"
|
229 |
+
},
|
230 |
+
"hair_color_num_categories": {
|
231 |
+
"dtype": "int32",
|
232 |
+
"id": null,
|
233 |
+
"_type": "Value"
|
234 |
+
},
|
235 |
+
"glasses": {
|
236 |
+
"dtype": "int32",
|
237 |
+
"id": null,
|
238 |
+
"_type": "Value"
|
239 |
+
},
|
240 |
+
"glasses_num_categories": {
|
241 |
+
"dtype": "int32",
|
242 |
+
"id": null,
|
243 |
+
"_type": "Value"
|
244 |
+
},
|
245 |
+
"glasses_color": {
|
246 |
+
"dtype": "int32",
|
247 |
+
"id": null,
|
248 |
+
"_type": "Value"
|
249 |
+
},
|
250 |
+
"glasses_color_num_categories": {
|
251 |
+
"dtype": "int32",
|
252 |
+
"id": null,
|
253 |
+
"_type": "Value"
|
254 |
+
},
|
255 |
+
"eye_slant": {
|
256 |
+
"dtype": "int32",
|
257 |
+
"id": null,
|
258 |
+
"_type": "Value"
|
259 |
+
},
|
260 |
+
"eye_slant_num_categories": {
|
261 |
+
"dtype": "int32",
|
262 |
+
"id": null,
|
263 |
+
"_type": "Value"
|
264 |
+
},
|
265 |
+
"eyebrow_width": {
|
266 |
+
"dtype": "int32",
|
267 |
+
"id": null,
|
268 |
+
"_type": "Value"
|
269 |
+
},
|
270 |
+
"eyebrow_width_num_categories": {
|
271 |
+
"dtype": "int32",
|
272 |
+
"id": null,
|
273 |
+
"_type": "Value"
|
274 |
+
},
|
275 |
+
"eye_eyebrow_distance": {
|
276 |
+
"dtype": "int32",
|
277 |
+
"id": null,
|
278 |
+
"_type": "Value"
|
279 |
+
},
|
280 |
+
"eye_eyebrow_distance_num_categories": {
|
281 |
+
"dtype": "int32",
|
282 |
+
"id": null,
|
283 |
+
"_type": "Value"
|
284 |
+
}
|
285 |
+
},
|
286 |
+
"post_processed": null,
|
287 |
+
"supervised_keys": {
|
288 |
+
"input": "img_bytes",
|
289 |
+
"output": ""
|
290 |
+
},
|
291 |
+
"task_templates": null,
|
292 |
+
"builder_name": "cartoonset",
|
293 |
+
"config_name": "10k+features",
|
294 |
+
"version": {
|
295 |
+
"version_str": "1.0.0",
|
296 |
+
"description": "",
|
297 |
+
"major": 1,
|
298 |
+
"minor": 0,
|
299 |
+
"patch": 0
|
300 |
+
},
|
301 |
+
"splits": {
|
302 |
+
"train": {
|
303 |
+
"name": "train",
|
304 |
+
"num_bytes": 489776874,
|
305 |
+
"num_examples": 10000,
|
306 |
+
"dataset_name": "cartoonset"
|
307 |
+
}
|
308 |
+
},
|
309 |
+
"download_checksums": {
|
310 |
+
"https://huggingface.co/datasets/cgarciae/cartoonset/resolve/1.0.0/data/cartoonset10k.tgz": {
|
311 |
+
"num_bytes": 476635078,
|
312 |
+
"checksum": "902145ad5096af10ca9ee200b648e2a60e8b6b83dd2f4dc5356817988be8ff43"
|
313 |
+
}
|
314 |
+
},
|
315 |
+
"download_size": 476635078,
|
316 |
+
"post_processing_size": null,
|
317 |
+
"dataset_size": 489776874,
|
318 |
+
"size_in_bytes": 966411952
|
319 |
+
},
|
320 |
+
"100k+features": {
|
321 |
+
"description": "Cartoon Set is a collection of random, 2D cartoon avatar images. The cartoons vary in 10 artwork \ncategories, 4 color categories, and 4 proportion categories, with a total of ~1013 possible \ncombinations. We provide sets of 10k and 100k randomly chosen cartoons and labeled attributes. \n",
|
322 |
+
"citation": "\n@article{DBLP:journals/corr/abs-1711-05139,\n author = {Amelie Royer and\n Konstantinos Bousmalis and\n Stephan Gouws and\n Fred Bertsch and\n Inbar Mosseri and\n Forrester Cole and\n Kevin Murphy},\n title = {{XGAN:} Unsupervised Image-to-Image Translation for many-to-many Mappings},\n journal = {CoRR},\n volume = {abs/1711.05139},\n year = {2017},\n url = {http://arxiv.org/abs/1711.05139},\n eprinttype = {arXiv},\n eprint = {1711.05139},\n timestamp = {Mon, 13 Aug 2018 16:47:38 +0200},\n biburl = {https://dblp.org/rec/journals/corr/abs-1711-05139.bib},\n bibsource = {dblp computer science bibliography, https://dblp.org}\n}\n",
|
323 |
+
"homepage": "https://www.cs.toronto.edu/~kriz/cifar.html",
|
324 |
+
"license": "",
|
325 |
+
"features": {
|
326 |
+
"img_bytes": {
|
327 |
+
"dtype": "binary",
|
328 |
+
"id": null,
|
329 |
+
"_type": "Value"
|
330 |
+
},
|
331 |
+
"eye_angle": {
|
332 |
+
"dtype": "int32",
|
333 |
+
"id": null,
|
334 |
+
"_type": "Value"
|
335 |
+
},
|
336 |
+
"eye_angle_num_categories": {
|
337 |
+
"dtype": "int32",
|
338 |
+
"id": null,
|
339 |
+
"_type": "Value"
|
340 |
+
},
|
341 |
+
"eye_lashes": {
|
342 |
+
"dtype": "int32",
|
343 |
+
"id": null,
|
344 |
+
"_type": "Value"
|
345 |
+
},
|
346 |
+
"eye_lashes_num_categories": {
|
347 |
+
"dtype": "int32",
|
348 |
+
"id": null,
|
349 |
+
"_type": "Value"
|
350 |
+
},
|
351 |
+
"eye_lid": {
|
352 |
+
"dtype": "int32",
|
353 |
+
"id": null,
|
354 |
+
"_type": "Value"
|
355 |
+
},
|
356 |
+
"eye_lid_num_categories": {
|
357 |
+
"dtype": "int32",
|
358 |
+
"id": null,
|
359 |
+
"_type": "Value"
|
360 |
+
},
|
361 |
+
"chin_length": {
|
362 |
+
"dtype": "int32",
|
363 |
+
"id": null,
|
364 |
+
"_type": "Value"
|
365 |
+
},
|
366 |
+
"chin_length_num_categories": {
|
367 |
+
"dtype": "int32",
|
368 |
+
"id": null,
|
369 |
+
"_type": "Value"
|
370 |
+
},
|
371 |
+
"eyebrow_weight": {
|
372 |
+
"dtype": "int32",
|
373 |
+
"id": null,
|
374 |
+
"_type": "Value"
|
375 |
+
},
|
376 |
+
"eyebrow_weight_num_categories": {
|
377 |
+
"dtype": "int32",
|
378 |
+
"id": null,
|
379 |
+
"_type": "Value"
|
380 |
+
},
|
381 |
+
"eyebrow_shape": {
|
382 |
+
"dtype": "int32",
|
383 |
+
"id": null,
|
384 |
+
"_type": "Value"
|
385 |
+
},
|
386 |
+
"eyebrow_shape_num_categories": {
|
387 |
+
"dtype": "int32",
|
388 |
+
"id": null,
|
389 |
+
"_type": "Value"
|
390 |
+
},
|
391 |
+
"eyebrow_thickness": {
|
392 |
+
"dtype": "int32",
|
393 |
+
"id": null,
|
394 |
+
"_type": "Value"
|
395 |
+
},
|
396 |
+
"eyebrow_thickness_num_categories": {
|
397 |
+
"dtype": "int32",
|
398 |
+
"id": null,
|
399 |
+
"_type": "Value"
|
400 |
+
},
|
401 |
+
"face_shape": {
|
402 |
+
"dtype": "int32",
|
403 |
+
"id": null,
|
404 |
+
"_type": "Value"
|
405 |
+
},
|
406 |
+
"face_shape_num_categories": {
|
407 |
+
"dtype": "int32",
|
408 |
+
"id": null,
|
409 |
+
"_type": "Value"
|
410 |
+
},
|
411 |
+
"facial_hair": {
|
412 |
+
"dtype": "int32",
|
413 |
+
"id": null,
|
414 |
+
"_type": "Value"
|
415 |
+
},
|
416 |
+
"facial_hair_num_categories": {
|
417 |
+
"dtype": "int32",
|
418 |
+
"id": null,
|
419 |
+
"_type": "Value"
|
420 |
+
},
|
421 |
+
"hair": {
|
422 |
+
"dtype": "int32",
|
423 |
+
"id": null,
|
424 |
+
"_type": "Value"
|
425 |
+
},
|
426 |
+
"hair_num_categories": {
|
427 |
+
"dtype": "int32",
|
428 |
+
"id": null,
|
429 |
+
"_type": "Value"
|
430 |
+
},
|
431 |
+
"eye_color": {
|
432 |
+
"dtype": "int32",
|
433 |
+
"id": null,
|
434 |
+
"_type": "Value"
|
435 |
+
},
|
436 |
+
"eye_color_num_categories": {
|
437 |
+
"dtype": "int32",
|
438 |
+
"id": null,
|
439 |
+
"_type": "Value"
|
440 |
+
},
|
441 |
+
"face_color": {
|
442 |
+
"dtype": "int32",
|
443 |
+
"id": null,
|
444 |
+
"_type": "Value"
|
445 |
+
},
|
446 |
+
"face_color_num_categories": {
|
447 |
+
"dtype": "int32",
|
448 |
+
"id": null,
|
449 |
+
"_type": "Value"
|
450 |
+
},
|
451 |
+
"hair_color": {
|
452 |
+
"dtype": "int32",
|
453 |
+
"id": null,
|
454 |
+
"_type": "Value"
|
455 |
+
},
|
456 |
+
"hair_color_num_categories": {
|
457 |
+
"dtype": "int32",
|
458 |
+
"id": null,
|
459 |
+
"_type": "Value"
|
460 |
+
},
|
461 |
+
"glasses": {
|
462 |
+
"dtype": "int32",
|
463 |
+
"id": null,
|
464 |
+
"_type": "Value"
|
465 |
+
},
|
466 |
+
"glasses_num_categories": {
|
467 |
+
"dtype": "int32",
|
468 |
+
"id": null,
|
469 |
+
"_type": "Value"
|
470 |
+
},
|
471 |
+
"glasses_color": {
|
472 |
+
"dtype": "int32",
|
473 |
+
"id": null,
|
474 |
+
"_type": "Value"
|
475 |
+
},
|
476 |
+
"glasses_color_num_categories": {
|
477 |
+
"dtype": "int32",
|
478 |
+
"id": null,
|
479 |
+
"_type": "Value"
|
480 |
+
},
|
481 |
+
"eye_slant": {
|
482 |
+
"dtype": "int32",
|
483 |
+
"id": null,
|
484 |
+
"_type": "Value"
|
485 |
+
},
|
486 |
+
"eye_slant_num_categories": {
|
487 |
+
"dtype": "int32",
|
488 |
+
"id": null,
|
489 |
+
"_type": "Value"
|
490 |
+
},
|
491 |
+
"eyebrow_width": {
|
492 |
+
"dtype": "int32",
|
493 |
+
"id": null,
|
494 |
+
"_type": "Value"
|
495 |
+
},
|
496 |
+
"eyebrow_width_num_categories": {
|
497 |
+
"dtype": "int32",
|
498 |
+
"id": null,
|
499 |
+
"_type": "Value"
|
500 |
+
},
|
501 |
+
"eye_eyebrow_distance": {
|
502 |
+
"dtype": "int32",
|
503 |
+
"id": null,
|
504 |
+
"_type": "Value"
|
505 |
+
},
|
506 |
+
"eye_eyebrow_distance_num_categories": {
|
507 |
+
"dtype": "int32",
|
508 |
+
"id": null,
|
509 |
+
"_type": "Value"
|
510 |
+
}
|
511 |
+
},
|
512 |
+
"post_processed": null,
|
513 |
+
"supervised_keys": {
|
514 |
+
"input": "img_bytes",
|
515 |
+
"output": ""
|
516 |
+
},
|
517 |
+
"task_templates": null,
|
518 |
+
"builder_name": "cartoonset",
|
519 |
+
"config_name": "100k+features",
|
520 |
+
"version": {
|
521 |
+
"version_str": "1.0.0",
|
522 |
+
"description": "",
|
523 |
+
"major": 1,
|
524 |
+
"minor": 0,
|
525 |
+
"patch": 0
|
526 |
+
},
|
527 |
+
"splits": {
|
528 |
+
"train": {
|
529 |
+
"name": "train",
|
530 |
+
"num_bytes": 4904016989,
|
531 |
+
"num_examples": 100000,
|
532 |
+
"dataset_name": "cartoonset"
|
533 |
+
}
|
534 |
+
},
|
535 |
+
"download_checksums": {
|
536 |
+
"https://huggingface.co/datasets/cgarciae/cartoonset/resolve/1.0.0/data/cartoonset100k.tgz": {
|
537 |
+
"num_bytes": 4766442036,
|
538 |
+
"checksum": "541dffe1016b10e8177dd534188fa729c8ed9111734498c405d55e47aae1a2a6"
|
539 |
+
}
|
540 |
+
},
|
541 |
+
"download_size": 4766442036,
|
542 |
+
"post_processing_size": null,
|
543 |
+
"dataset_size": 4904016989,
|
544 |
+
"size_in_bytes": 9670459025
|
545 |
}
|
546 |
}
|