|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""This dataset contains extracts from historical Dutch newspapers which have been containing keywords of potentially contentious words (according to present-day sensibilities). |
|
The dataset contains multiple annotations per instance, given the option to quantify agreement scores for annotations.""" |
|
|
|
import pandas as pd |
|
import datasets |
|
|
|
|
|
_CITATION = """@misc{ContentiousContextsCorpus2021, |
|
author = {Cultural AI}, |
|
title = {Contentious Contexts Corpus}, |
|
year = {2021}, |
|
publisher = {GitHub}, |
|
journal = {GitHub repository}, |
|
howpublished = {\\url{https://github.com/cultural-ai/ConConCor}}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """This dataset contains extracts from historical Dutch newspapers which have been containing keywords of potentially contentious words (according to present-day sensibilities). |
|
The dataset contains multiple annotations per instance, given the option to quantify agreement scores for annotations. This dataset can be used to track how words and their meanings have changed over time |
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://github.com/cultural-ai/ConConCor" |
|
|
|
|
|
_LICENSE = "CC-BY" |
|
|
|
_URLS = [ |
|
"https://raw.githubusercontent.com/cultural-ai/ConConCor/main/Dataset/Annotations.csv", |
|
"https://raw.githubusercontent.com/cultural-ai/ConConCor/main/Dataset/Extracts.csv", |
|
] |
|
response_mapping = { |
|
"Omstreden naar huidige maatstaven": "Contentious according to current standards", |
|
"Niet omstreden": "Not contentious", |
|
"Weet ik niet": "I don't know", |
|
"Onleesbare OCR": "Illegible OCR", |
|
} |
|
|
|
logger = datasets.utils.logging.get_logger(__name__) |
|
|
|
|
|
class ContentiousContexts(datasets.GeneratorBasedBuilder): |
|
"""This dataset contains extracts from historical Dutch newspapers which have been containing keywords of potentially contentious words""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"extract_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"target": datasets.Value("string"), |
|
"annotator_responses_english": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"response": datasets.Value("string"), |
|
} |
|
], |
|
"annotator_responses_dutch": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"response": datasets.Value("string"), |
|
} |
|
], |
|
"annotator_suggestions": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"suggestion": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
ann_file = dl_manager.download(_URLS[0]) |
|
text_file = dl_manager.download(_URLS[1]) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepaths": [ann_file, text_file], "split": "train",}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepaths, split): |
|
annotations = pd.read_csv(filepaths[0], dtype="object") |
|
texts = pd.read_csv(filepaths[1], dtype="object") |
|
annotations.fillna("", inplace=True) |
|
texts.fillna("", inplace=True) |
|
for _, row in texts.iterrows(): |
|
data_point = {} |
|
data_point["extract_id"] = row["extract_id"] |
|
data_point["target"] = row["target_compound_bolded"] |
|
data_point["text"] = row["text"] |
|
annotator_responses = annotations[ |
|
annotations["extract_id"] == row["extract_id"] |
|
] |
|
resp_en_list = [] |
|
resp_nl_list = [] |
|
sugg_list = [] |
|
for _, ann_row in annotator_responses.iterrows(): |
|
ann_id = ann_row["anonymised_participant_id"] |
|
response_dutch = ann_row["response"] |
|
response_english = response_mapping[response_dutch] |
|
suggestion = ann_row["suggestion"] |
|
resp_en_list.append({"id": ann_id, "response": response_english}) |
|
resp_nl_list.append({"id": ann_id, "response": response_dutch}) |
|
sugg_list.append({"id": ann_id, "suggestion": suggestion}) |
|
|
|
data_point["annotator_responses_english"] = resp_en_list |
|
data_point["annotator_responses_dutch"] = resp_nl_list |
|
data_point["annotator_suggestions"] = sugg_list |
|
yield data_point["extract_id"], data_point |
|
|