Datasets:
File size: 9,026 Bytes
34393a9 614d2cf bb94006 614d2cf efd9bcd 1605397 efd9bcd 34393a9 614d2cf 4e4b9e6 614d2cf fec2554 614d2cf 153fbdd 614d2cf 9de292c b79c084 614d2cf 9de292c 614d2cf 9de292c 614d2cf 9de292c 614d2cf 9de292c 614d2cf 9de292c 614d2cf 9de292c 614d2cf 9de292c 614d2cf 9de292c df8cb61 9de292c 614d2cf df8cb61 614d2cf df8cb61 9de292c df8cb61 9de292c 66d5377 9de292c 614d2cf 9de292c 614d2cf 9de292c 614d2cf 9de292c 614d2cf 1605397 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
---
annotations_creators:
- expert-generated
language_creators:
- expert-generated
license:
- cc0-1.0
multilinguality:
- other-iconclass-metadata
size_categories:
- 10K<n<100K
source_datasets: []
task_categories:
- image-classification
- image-to-text
- feature-extraction
task_ids:
- multi-class-image-classification
- multi-label-image-classification
- image-captioning
pretty_name: 'Brill Iconclass AI Test Set '
tags:
- lam
- art
dataset_info:
features:
- name: image
dtype: image
- name: label
list: string
splits:
- name: train
num_bytes: 3281967920.848
num_examples: 87744
download_size: 3313602175
dataset_size: 3281967920.848
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# Dataset Card for Brill Iconclass AI Test Set
## Table of Contents
- [Table of Contents](#table-of-contents)
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [https://iconclass.org/testset/](https://iconclass.org/testset/)
- **Repository:**[https://iconclass.org/testset/](https://iconclass.org/testset/)
- **Paper:**[https://iconclass.org/testset/ICONCLASS_and_AI.pdf](https://iconclass.org/testset/ICONCLASS_and_AI.pdf)
- **Leaderboard:**
- **Point of Contact:**[[email protected]](mailto:[email protected])
### Dataset Summary
> A test dataset and challenge to apply machine learning to collections described with the Iconclass classification system.
This dataset contains `87749` images with [Iconclass](https://iconclass.org/) metadata assigned to the images. The [iconclass](https://iconclass.org/) metadata classification system is intended to provide ['the comprehensive classification system for the content of images.'](https://iconclass.org/).
> Iconclass was developed in the Netherlands as a standard classification for recording collections, with the idea of assembling huge databases that will allow the retrieval of images featuring particular details, subjects or other common factors. It was developed in the 1970s and was loosely based on the Dewey Decimal System because it was meant to be used in art library card catalogs. [source](https://en.wikipedia.org/wiki/Iconclass)
The [Iconclass](https://iconclass.org)
> view of the world is subdivided in 10 main categories...An Iconclass concept consists of an alphanumeric class number (“notation”) and a corresponding content definition (“textual correlate”). An object can be tagged with as many concepts as the user sees fit. [source](https://iconclass.org/)
These ten divisions are as follows:
- 0 Abstract, Non-representational Art
- 1 Religion and Magic
- 2 Nature
- 3 Human being, Man in general
- 4 Society, Civilization, Culture
- 5 Abstract Ideas and Concepts
- 6 History
- 7 Bible
- 8 Literature
- 9 Classical Mythology and Ancient History
Within each of these divisions further subdivision's are possible (9 or 10 subdivisions). For example, under `4 Society, Civilization, Culture`, one can find:
- 41 · material aspects of daily life
- 42 · family, descendance
- 43 · recreation, amusement
- 44 · state; law; political life
- ...
See [https://iconclass.org/4](https://iconclass.org/4) for the full list.
To illustrate we can look at some example Iconclass classifications.
`41A12` represents `castle`. This classification is generated via building from the 'base' division `4`, with the following attributes:
- 4 · Society, Civilization, Culture
- 41 · material aspects of daily life
- 41A · housing
- 41A1 · civic architecture; edifices; dwellings
[source](https://iconclass.org/41A12)
The construction of Iconclass of parts makes it particularly interesting (and challenging) to tackle via Machine Learning. Whilst one could tackle this dataset as a (multi) label image classification problem, this is only one way of tackling it. For example in the above label `castle` giving the model the 'freedom' to predict only a partial label could result in the prediction `41A` i.e. housing. Whilst a very particular form of housing this prediction for 'castle' is not 'wrong' so much as it is not as precise as a human cataloguer may provide.
### Supported Tasks and Leaderboards
As discussed above this dataset could be tackled in various ways:
- as an image classification task
- as a multi-label classification task
- as an image to text task
- as a task whereby a model predicts partial sequences of the label.
This list is not exhaustive.
### Languages
This dataset doesn't have a natural language. The labels themselves can be treated as a form of language i.e. the label can be thought of as a sequence of tokens that construct a 'sentence'.
## Dataset Structure
The dataset contains a single configuration.
### Data Instances
An example instance of the dataset is as follows:
``` python
{'image': <PIL.JpegImagePlugin.JpegImageFile image mode=RGB size=390x500 at 0x7FC7FFBBD2D0>,
'label': ['31A235', '31A24(+1)', '61B(+54)', '61B:31A2212(+1)', '61B:31D14']}
```
### Data Fields
The dataset is made up of
- an image
- a sequence of Iconclass labels
### Data Splits
The dataset doesn't provide any predefined train, validation or test splits.
## Dataset Creation
> To facilitate the creation of better models in the cultural heritage domain, and promote the research on tools and techniques using Iconclass, we are making this dataset freely available. All that we ask is that any use is acknowledged and results be shared so that we can all benefit. The content is sampled from the Arkyves database. [source](https://labs.brill.com/ictestset/)
[More Information Needed]
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
The images are samples from the [Arkyves database](https://brill.com/view/db/arko?language=en). This collection includes images from
> from libraries and museums in many countries, including the Rijksmuseum in Amsterdam, the Netherlands Institute for Art History (RKD), the Herzog August Bibliothek in Wolfenbüttel, and the university libraries of Milan, Utrecht and Glasgow. [source](https://brill.com/view/db/arko?language=en)
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
The annotations are derived from the source dataset see above. Most annotations were likely created by staff with experience with the Iconclass metadata schema.
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
Iconclass as a metadata standard absorbs biases from the time and place of its creation (1940s Netherlands). In particular, '32B human races, peoples; nationalities' has been subject to criticism. '32B36 'primitive', 'pre-modern' peoples' is one example of a category which we may not wish to adopt. In general, there are components of the subdivisions of `32B` which reflect a belief that race is a scientific category rather than socially constructed.
The Iconclass community is actively exploring these limitations; for example, see [Revising Iconclass section 32B human races, peoples; nationalities](https://web.archive.org/web/20210425131753/https://iconclass.org/Updating32B.pdf).
One should be aware of these limitations to Iconclass, and in particular, before deploying a model trained on this data in any production settings.
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
Etienne Posthumus
### Licensing Information
[CC0 1.0](https://creativecommons.org/publicdomain/zero/1.0/)
### Citation Information
```
@MISC{iconclass,
title = {Brill Iconclass AI Test Set},
author={Etienne Posthumus},
year={2020}
}
```
### Contributions
Thanks to [@davanstrien](https://github.com/davanstrien) for adding this dataset. |