Datasets:

Modalities:
Text
Languages:
English
Libraries:
Datasets
License:
ddi_corpus / ddi_corpus.py
gabrielaltay's picture
fix bigbio imports
51cc888
raw
history blame
7.88 kB
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The DDI corpus has been manually annotated with drugs and pharmacokinetics and
pharmacodynamics interactions. It contains 1025 documents from two different
sources: DrugBank database and MedLine.
"""
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
from .bigbiohub import parse_brat_file
from .bigbiohub import brat_parse_to_bigbio_kb
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{HERREROZAZO2013914,
title = {
The DDI corpus: An annotated corpus with pharmacological substances and
drug-drug interactions
},
author = {
María Herrero-Zazo and Isabel Segura-Bedmar and Paloma Martínez and Thierry
Declerck
},
year = 2013,
journal = {Journal of Biomedical Informatics},
volume = 46,
number = 5,
pages = {914--920},
doi = {https://doi.org/10.1016/j.jbi.2013.07.011},
issn = {1532-0464},
url = {https://www.sciencedirect.com/science/article/pii/S1532046413001123},
keywords = {Biomedical corpora, Drug interaction, Information extraction}
}
"""
_DATASETNAME = "ddi_corpus"
_DISPLAYNAME = "DDI Corpus"
_DESCRIPTION = """\
The DDI corpus has been manually annotated with drugs and pharmacokinetics and \
pharmacodynamics interactions. It contains 1025 documents from two different \
sources: DrugBank database and MedLine.
"""
_HOMEPAGE = "https://github.com/isegura/DDICorpus"
_LICENSE = 'Creative Commons Attribution Non Commercial 4.0 International'
_URLS = {
_DATASETNAME: "https://github.com/isegura/DDICorpus/raw/master/DDICorpus-2013(BRAT).zip",
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class DDICorpusDataset(datasets.GeneratorBasedBuilder):
"""DDI Corpus"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="ddi_corpus_source",
version=SOURCE_VERSION,
description="DDI Corpus source schema",
schema="source",
subset_id="ddi_corpus",
),
BigBioConfig(
name="ddi_corpus_bigbio_kb",
version=BIGBIO_VERSION,
description="DDI Corpus BigBio schema",
schema="bigbio_kb",
subset_id="ddi_corpus",
),
]
DEFAULT_CONFIG_NAME = "ddi_corpus_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"document_id": datasets.Value("string"),
"text": datasets.Value("string"),
"entities": [
{
"offsets": datasets.Sequence(datasets.Value("int32")),
"text": datasets.Value("string"),
"type": datasets.Value("string"),
"id": datasets.Value("string"),
}
],
"relations": [
{
"id": datasets.Value("string"),
"head": {
"ref_id": datasets.Value("string"),
"role": datasets.Value("string"),
},
"tail": {
"ref_id": datasets.Value("string"),
"role": datasets.Value("string"),
},
"type": datasets.Value("string"),
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
standoff_dir = os.path.join(data_dir, "DDICorpusBrat")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(standoff_dir, "Train"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(standoff_dir, "Test"),
"split": "test",
},
),
]
def _generate_examples(self, filepath: str, split: str) -> Tuple[int, Dict]:
if self.config.schema == "source":
for subdir, _, files in os.walk(filepath):
for file in files:
# Ignore configuration files and annotation files - we just consider the brat text files
if not file.endswith(".txt"):
continue
brat_example = parse_brat_file(Path(subdir) / file)
source_example = self._to_source_example(brat_example)
yield source_example["document_id"], source_example
elif self.config.schema == "bigbio_kb":
for subdir, _, files in os.walk(filepath):
for file in files:
# Ignore configuration files and annotation files - we just consider the brat text files
if not file.endswith(".txt"):
continue
# Read brat annotations for the given text file and convert example to the BigBio-KB format
brat_example = parse_brat_file(Path(subdir) / file)
kb_example = brat_parse_to_bigbio_kb(brat_example)
kb_example["id"] = kb_example["document_id"]
yield kb_example["id"], kb_example
@staticmethod
def _to_source_example(brat_example: Dict) -> Dict:
source_example = {
"document_id": brat_example["document_id"],
"text": brat_example["text"],
"relations": brat_example["relations"],
}
source_example["entities"] = []
for entity_annotation in brat_example["text_bound_annotations"]:
entity_ann = entity_annotation.copy()
source_example["entities"].append(
{
# These are lists in the parsed output, so just take the first element to
# match the source schema.
"offsets": entity_annotation["offsets"][0],
"text": entity_ann["text"][0],
"type": entity_ann["type"],
"id": entity_ann["id"],
}
)
return source_example