|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
The DDI corpus has been manually annotated with drugs and pharmacokinetics and |
|
pharmacodynamics interactions. It contains 1025 documents from two different |
|
sources: DrugBank database and MedLine. |
|
""" |
|
|
|
import os |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from .bigbiohub import kb_features |
|
from .bigbiohub import BigBioConfig |
|
from .bigbiohub import Tasks |
|
from .bigbiohub import parse_brat_file |
|
from .bigbiohub import brat_parse_to_bigbio_kb |
|
|
|
|
|
_LANGUAGES = ['English'] |
|
_PUBMED = True |
|
_LOCAL = False |
|
_CITATION = """\ |
|
@article{HERREROZAZO2013914, |
|
title = { |
|
The DDI corpus: An annotated corpus with pharmacological substances and |
|
drug-drug interactions |
|
}, |
|
author = { |
|
María Herrero-Zazo and Isabel Segura-Bedmar and Paloma Martínez and Thierry |
|
Declerck |
|
}, |
|
year = 2013, |
|
journal = {Journal of Biomedical Informatics}, |
|
volume = 46, |
|
number = 5, |
|
pages = {914--920}, |
|
doi = {https://doi.org/10.1016/j.jbi.2013.07.011}, |
|
issn = {1532-0464}, |
|
url = {https://www.sciencedirect.com/science/article/pii/S1532046413001123}, |
|
keywords = {Biomedical corpora, Drug interaction, Information extraction} |
|
} |
|
|
|
""" |
|
|
|
_DATASETNAME = "ddi_corpus" |
|
_DISPLAYNAME = "DDI Corpus" |
|
|
|
_DESCRIPTION = """\ |
|
The DDI corpus has been manually annotated with drugs and pharmacokinetics and \ |
|
pharmacodynamics interactions. It contains 1025 documents from two different \ |
|
sources: DrugBank database and MedLine. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/isegura/DDICorpus" |
|
|
|
_LICENSE = 'Creative Commons Attribution Non Commercial 4.0 International' |
|
|
|
_URLS = { |
|
_DATASETNAME: "https://github.com/isegura/DDICorpus/raw/master/DDICorpus-2013(BRAT).zip", |
|
} |
|
|
|
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
_BIGBIO_VERSION = "1.0.0" |
|
|
|
|
|
class DDICorpusDataset(datasets.GeneratorBasedBuilder): |
|
"""DDI Corpus""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION) |
|
|
|
BUILDER_CONFIGS = [ |
|
BigBioConfig( |
|
name="ddi_corpus_source", |
|
version=SOURCE_VERSION, |
|
description="DDI Corpus source schema", |
|
schema="source", |
|
subset_id="ddi_corpus", |
|
), |
|
BigBioConfig( |
|
name="ddi_corpus_bigbio_kb", |
|
version=BIGBIO_VERSION, |
|
description="DDI Corpus BigBio schema", |
|
schema="bigbio_kb", |
|
subset_id="ddi_corpus", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "ddi_corpus_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
|
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"document_id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"entities": [ |
|
{ |
|
"offsets": datasets.Sequence(datasets.Value("int32")), |
|
"text": datasets.Value("string"), |
|
"type": datasets.Value("string"), |
|
"id": datasets.Value("string"), |
|
} |
|
], |
|
"relations": [ |
|
{ |
|
"id": datasets.Value("string"), |
|
"head": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"tail": { |
|
"ref_id": datasets.Value("string"), |
|
"role": datasets.Value("string"), |
|
}, |
|
"type": datasets.Value("string"), |
|
} |
|
], |
|
} |
|
) |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
features = kb_features |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=str(_LICENSE), |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]: |
|
urls = _URLS[_DATASETNAME] |
|
data_dir = dl_manager.download_and_extract(urls) |
|
|
|
standoff_dir = os.path.join(data_dir, "DDICorpusBrat") |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(standoff_dir, "Train"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(standoff_dir, "Test"), |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: str, split: str) -> Tuple[int, Dict]: |
|
if self.config.schema == "source": |
|
for subdir, _, files in os.walk(filepath): |
|
for file in files: |
|
|
|
if not file.endswith(".txt"): |
|
continue |
|
|
|
brat_example = parse_brat_file(Path(subdir) / file) |
|
source_example = self._to_source_example(brat_example) |
|
|
|
yield source_example["document_id"], source_example |
|
|
|
elif self.config.schema == "bigbio_kb": |
|
for subdir, _, files in os.walk(filepath): |
|
for file in files: |
|
|
|
if not file.endswith(".txt"): |
|
continue |
|
|
|
|
|
brat_example = parse_brat_file(Path(subdir) / file) |
|
kb_example = brat_parse_to_bigbio_kb(brat_example) |
|
kb_example["id"] = kb_example["document_id"] |
|
|
|
yield kb_example["id"], kb_example |
|
|
|
@staticmethod |
|
def _to_source_example(brat_example: Dict) -> Dict: |
|
source_example = { |
|
"document_id": brat_example["document_id"], |
|
"text": brat_example["text"], |
|
"relations": brat_example["relations"], |
|
} |
|
|
|
source_example["entities"] = [] |
|
for entity_annotation in brat_example["text_bound_annotations"]: |
|
entity_ann = entity_annotation.copy() |
|
|
|
source_example["entities"].append( |
|
{ |
|
|
|
|
|
"offsets": entity_annotation["offsets"][0], |
|
"text": entity_ann["text"][0], |
|
"type": entity_ann["type"], |
|
"id": entity_ann["id"], |
|
} |
|
) |
|
|
|
return source_example |
|
|