File size: 7,882 Bytes
408e34b 51cc888 408e34b 51cc888 408e34b 51cc888 408e34b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
The DDI corpus has been manually annotated with drugs and pharmacokinetics and
pharmacodynamics interactions. It contains 1025 documents from two different
sources: DrugBank database and MedLine.
"""
import os
from pathlib import Path
from typing import Dict, List, Tuple
import datasets
from .bigbiohub import kb_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
from .bigbiohub import parse_brat_file
from .bigbiohub import brat_parse_to_bigbio_kb
_LANGUAGES = ['English']
_PUBMED = True
_LOCAL = False
_CITATION = """\
@article{HERREROZAZO2013914,
title = {
The DDI corpus: An annotated corpus with pharmacological substances and
drug-drug interactions
},
author = {
María Herrero-Zazo and Isabel Segura-Bedmar and Paloma Martínez and Thierry
Declerck
},
year = 2013,
journal = {Journal of Biomedical Informatics},
volume = 46,
number = 5,
pages = {914--920},
doi = {https://doi.org/10.1016/j.jbi.2013.07.011},
issn = {1532-0464},
url = {https://www.sciencedirect.com/science/article/pii/S1532046413001123},
keywords = {Biomedical corpora, Drug interaction, Information extraction}
}
"""
_DATASETNAME = "ddi_corpus"
_DISPLAYNAME = "DDI Corpus"
_DESCRIPTION = """\
The DDI corpus has been manually annotated with drugs and pharmacokinetics and \
pharmacodynamics interactions. It contains 1025 documents from two different \
sources: DrugBank database and MedLine.
"""
_HOMEPAGE = "https://github.com/isegura/DDICorpus"
_LICENSE = 'Creative Commons Attribution Non Commercial 4.0 International'
_URLS = {
_DATASETNAME: "https://github.com/isegura/DDICorpus/raw/master/DDICorpus-2013(BRAT).zip",
}
_SUPPORTED_TASKS = [Tasks.NAMED_ENTITY_RECOGNITION, Tasks.RELATION_EXTRACTION]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class DDICorpusDataset(datasets.GeneratorBasedBuilder):
"""DDI Corpus"""
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
BUILDER_CONFIGS = [
BigBioConfig(
name="ddi_corpus_source",
version=SOURCE_VERSION,
description="DDI Corpus source schema",
schema="source",
subset_id="ddi_corpus",
),
BigBioConfig(
name="ddi_corpus_bigbio_kb",
version=BIGBIO_VERSION,
description="DDI Corpus BigBio schema",
schema="bigbio_kb",
subset_id="ddi_corpus",
),
]
DEFAULT_CONFIG_NAME = "ddi_corpus_source"
def _info(self) -> datasets.DatasetInfo:
if self.config.schema == "source":
features = datasets.Features(
{
"document_id": datasets.Value("string"),
"text": datasets.Value("string"),
"entities": [
{
"offsets": datasets.Sequence(datasets.Value("int32")),
"text": datasets.Value("string"),
"type": datasets.Value("string"),
"id": datasets.Value("string"),
}
],
"relations": [
{
"id": datasets.Value("string"),
"head": {
"ref_id": datasets.Value("string"),
"role": datasets.Value("string"),
},
"tail": {
"ref_id": datasets.Value("string"),
"role": datasets.Value("string"),
},
"type": datasets.Value("string"),
}
],
}
)
elif self.config.schema == "bigbio_kb":
features = kb_features
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _split_generators(self, dl_manager) -> List[datasets.SplitGenerator]:
urls = _URLS[_DATASETNAME]
data_dir = dl_manager.download_and_extract(urls)
standoff_dir = os.path.join(data_dir, "DDICorpusBrat")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(standoff_dir, "Train"),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(standoff_dir, "Test"),
"split": "test",
},
),
]
def _generate_examples(self, filepath: str, split: str) -> Tuple[int, Dict]:
if self.config.schema == "source":
for subdir, _, files in os.walk(filepath):
for file in files:
# Ignore configuration files and annotation files - we just consider the brat text files
if not file.endswith(".txt"):
continue
brat_example = parse_brat_file(Path(subdir) / file)
source_example = self._to_source_example(brat_example)
yield source_example["document_id"], source_example
elif self.config.schema == "bigbio_kb":
for subdir, _, files in os.walk(filepath):
for file in files:
# Ignore configuration files and annotation files - we just consider the brat text files
if not file.endswith(".txt"):
continue
# Read brat annotations for the given text file and convert example to the BigBio-KB format
brat_example = parse_brat_file(Path(subdir) / file)
kb_example = brat_parse_to_bigbio_kb(brat_example)
kb_example["id"] = kb_example["document_id"]
yield kb_example["id"], kb_example
@staticmethod
def _to_source_example(brat_example: Dict) -> Dict:
source_example = {
"document_id": brat_example["document_id"],
"text": brat_example["text"],
"relations": brat_example["relations"],
}
source_example["entities"] = []
for entity_annotation in brat_example["text_bound_annotations"]:
entity_ann = entity_annotation.copy()
source_example["entities"].append(
{
# These are lists in the parsed output, so just take the first element to
# match the source schema.
"offsets": entity_annotation["offsets"][0],
"text": entity_ann["text"][0],
"type": entity_ann["type"],
"id": entity_ann["id"],
}
)
return source_example
|