File size: 37,506 Bytes
200f5f2 ba0efe8 200f5f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 |
# coding=utf-8
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
BioASQ Task B On Biomedical Semantic QA (Involves IR, QA, Summarization qnd
More). This task uses benchmark datasets containing development and test
questions, in English, along with gold standard (reference) answers constructed
by a team of biomedical experts. The participants have to respond with relevant
concepts, articles, snippets and RDF triples, from designated resources, as well
as exact and 'ideal' answers.
Fore more information about the challenge, the organisers and the relevant
publications please visit: http://bioasq.org/
"""
import glob
import json
import os
import re
import datasets
from .bigbiohub import qa_features
from .bigbiohub import BigBioConfig
from .bigbiohub import Tasks
_LANGUAGES = ["English"]
_PUBMED = True
_LOCAL = True
_CITATION = """\
@article{tsatsaronis2015overview,
title = {
An overview of the BIOASQ large-scale biomedical semantic indexing and
question answering competition
},
author = {
Tsatsaronis, George and Balikas, Georgios and Malakasiotis, Prodromos
and Partalas, Ioannis and Zschunke, Matthias and Alvers, Michael R and
Weissenborn, Dirk and Krithara, Anastasia and Petridis, Sergios and
Polychronopoulos, Dimitris and others
},
year = 2015,
journal = {BMC bioinformatics},
publisher = {BioMed Central Ltd},
volume = 16,
number = 1,
pages = 138
}
"""
_DATASETNAME = "bioasq_task_b"
_DISPLAYNAME = "BioASQ Task B"
_BIOASQ_10B_DESCRIPTION = """\
The data are intended to be used as training and development data for BioASQ
10, which will take place during 2022. There is one file containing the data:
- training10b.json
The file contains the data of the first nine editions of the challenge: 4234
questions [1] with their relevant documents, snippets, concepts and RDF
triples, exact and ideal answers.
Differences with BioASQ-training9b.json
- 492 new questions added from BioASQ9
- The question with id 56c1f01eef6e394741000046 had identical body with
602498cb1cb411341a00009e. All relevant elements from both questions
are available in the merged question with id 602498cb1cb411341a00009e.
- The question with id 5c7039207c78d69471000065 had identical body with
601c317a1cb411341a000014. All relevant elements from both questions
are available in the merged question with id 601c317a1cb411341a000014.
- The question with id 5e4b540b6d0a27794100001c had identical body with
602828b11cb411341a0000fc. All relevant elements from both questions
are available in the merged question with id 602828b11cb411341a0000fc.
- The question with id 5fdb42fba43ad31278000027 had identical body with
5d35eb01b3a638076300000f. All relevant elements from both questions
are available in the merged question with id 5d35eb01b3a638076300000f.
- The question with id 601d76311cb411341a000045 had identical body with
6060732b94d57fd87900003d. All relevant elements from both questions
are available in the merged question with id 6060732b94d57fd87900003d.
[1] 4234 questions : 1252 factoid, 1148 yesno, 1018 summary, 816 list
"""
_BIOASQ_9B_DESCRIPTION = """\
The data are intended to be used as training and development data for BioASQ 9,
which will take place during 2021. There is one file containing the data:
- training9b.json
The file contains the data of the first seven editions of the challenge: 3742
questions [1] with their relevant documents, snippets, concepts and RDF triples,
exact and ideal answers.
Differences with BioASQ-training8b.json
- 499 new questions added from BioASQ8
- The question with id 5e30e689fbd6abf43b00003a had identical body with
5880e417713cbdfd3d000001. All relevant elements from both questions
are available in the merged question with id 5880e417713cbdfd3d000001.
[1] 3742 questions : 1091 factoid, 1033 yesno, 899 summary, 719 list
"""
_BIOASQ_8B_DESCRIPTION = """\
The data are intended to be used as training and development data for BioASQ 8,
which will take place during 2020. There is one file containing the data:
- training8b.json
The file contains the data of the first seven editions of the challenge: 3243
questions [1] with their relevant documents, snippets, concepts and RDF triples,
exact and ideal answers.
Differences with BioASQ-training7b.json
- 500 new questions added from BioASQ7
- 4 questions were removed
- The question with id 5717fb557de986d80d000009 had identical body with
571e06447de986d80d000016. All relevant elements from both questions
are available in the merged question with id 571e06447de986d80d000016.
- The question with id 5c589ddb86df2b917400000b had identical body with
5c6b7a9e7c78d69471000029. All relevant elements from both questions
are available in the merged question with id 5c6b7a9e7c78d69471000029.
- The question with id 52ffb5d12059c6d71c00007c had identical body with
52e7870a98d023950500001a. All relevant elements from both questions
are available in the merged question with id 52e7870a98d023950500001a.
- The question with id 53359338d6d3ac6a3400004f had identical body with
589a246878275d0c4a000030. All relevant elements from both questions
are available in the merged question with id 589a246878275d0c4a000030.
**** UPDATE 25/02/2020 *****
The previous version of the dataset contained an inconsistency on question with
id "5c9904eaecadf2e73f00002e", where the "ideal_answer" field was missing.
This has been fixed.
"""
_BIOASQ_7B_DESCRIPTION = """\
The data are intended to be used as training and development data for BioASQ 7,
which will take place during 2019. There is one file containing the data:
- BioASQ-trainingDataset7b.json
The file contains the data of the first six editions of the challenge: 2747
questions [1] with their relevant documents, snippets, concepts and RDF triples,
exact and ideal answers.
Differences with BioASQ-trainingDataset6b.json
- 500 new questions added from BioASQ6
- 4 questions were removed
- The question with id 569ed752ceceede94d000004 had identical body with
a new question from BioASQ6. All relevant elements from both questions
are available in the merged question with id 5abd31e0fcf456587200002c
- 3 questions were removed as incomplete: 54d643023706e89528000007,
532819afd6d3ac6a3400000f, 517545168ed59a060a00002b
- 4 questions were revised for various confusions that have been identified
- In 2 questions the ideal answer has been revised :
51406e6223fec90375000009, 5172f8118ed59a060a000019
- In 4 questions the snippets and documents list has been revised :
51406e6223fec90375000009, 5172f8118ed59a060a000019,
51593dc8d24251bc05000099, 5158a5b8d24251bc05000097
- In 198 questions the documents list has updated with missing
documents from the relevant snippets list. [2]
[1] 2747 questions : 779 factoid, 745 yesno, 667 summary, 556 list
[2] 55031181e9bde69634000014, 51406e6223fec90375000009, 54d643023706e89528000007,
52bf1b0a03868f1b06000009, 52bf19c503868f1b06000001, 51593dc8d24251bc05000099,
530a5117970c65fa6b000007, 553a8d78f321868558000003, 531a3fe3b166e2b806000038,
532819afd6d3ac6a3400000f, 5158a5b8d24251bc05000097, 553653a5bc4f83e828000007,
535d2cf09a4572de6f000004, 53386282d6d3ac6a3400005a, 517a8ce98ed59a060a000045,
55391ce8bc4f83e828000018, 5547d700f35db75526000007, 5713bf261174fb1755000011,
6f15c5a2ac5ed1459000012, 52b2e498f828ad283c000010, 570a7594cf1c325851000026,
530cefaaad0bf1360c000012, 530f685c329f5fcf1e000002, 550c4011a103b78016000009,
552faababc4f83e828000005, 54cf48acf693c3b16b00000b, 550313aae9bde6963400001f,
551177626a8cde6b72000005, 54eded8c94afd6150400000c, 550c3754a103b78016000007,
56f555b609dd18d46b000007, 54c26e29f693c3b16b000003, 54da0c524b1fd0d33c00000b,
52bf1d3c03868f1b0600000d, 5343bdd6aeec6fbd07000001, 52cb9b9b03868f1b0600002d,
55423875ec76f5e50c000002, 571366ba1174fb1755000005, 56c4d14ab04e159d0e000003,
550c44d1a103b7801600000a, 5547a01cf35db75526000005, 55422640ccca0ce74b000004,
54ecb66d445c3b5a5f000002, 553656c4bc4f83e828000009, 5172f8118ed59a060a000019,
513711055274a5fb0700000e, 54d892ee014675820d000005, 52e6c92598d0239505000019,
5353aedb288f4dae47000006, 52bf1f1303868f1b06000014, 5519113b622b19434500000f,
52b2f1724003448f5500000b, 5525317687ecba3764000007, 554a0cadf35db7552600000f,
55152bd246478f2f2c000002, 516c3960298dcd4e51000073, 571e417bbb137a4b0c00000a,
551910d3622b194345000008, 54dc8ed6c0bb8dce23000002, 511a4ec01159fa8212000004,
54d8ea2c4b1fd0d33c000002, 5148e1d6d24251bc0500003a, 515dbb3b298dcd4e51000018,
56f7c15a09dd18d46b000012, 51475d5cd24251bc0500001b, 54db7c4ac0bb8dce23000001,
57152ebbcb4ef8864c000002, 57134d511174fb1755000002, 55149f156a8cde6b72000013,
56bcd422d36b5da378000005, 54ede5c394afd61504000006, 517545168ed59a060a00002b,
5710ed19a5ed216440000003, 53442472aeec6fbd07000008, 55088e412e93f0133a000001,
54d762653706e89528000014, 550aef0ec2af5d5b7000000a, 552435602c8b63434a000009,
552446612c8b63434a00000c, 54d901ec4b1fd0d33c000006, 54cf45e7f693c3b16b00000a,
52fc8b772059c6d71c00006e, 5314d05adae131f84700000d, 5512c91b6a8cde6b7200000b,
56c5a7605795f9a73e000002, 55030a6ce9bde6963400000f, 553fac39c6a5098552000001,
531a3a58b166e2b806000037, 5509bd6a1180f13250000002, 54f9c40ddd3fc62544000001,
553c8fd1f32186855800000a, 56bce51cd36b5da37800000a, 550316a6e9bde69634000029,
55031286e9bde6963400001b, 536e46f27d100faa09000012, 5502abd1e9bde69634000008,
551af9106b348bb82c000002, 54edeb4394afd6150400000b, 5717cdd2070aa3d072000001,
56c5ade15795f9a73e000003, 531464a6e3eabad021000014, 58a0d87a78275d0c4a000053,
58a3160d60087bc10a00000a, 58a5d54860087bc10a000025, 58a0da5278275d0c4a000054,
58a3264e60087bc10a00000d, 589c8ef878275d0c4a000042, 58a3428d60087bc10a00001b,
58a3196360087bc10a00000b, 58a341eb60087bc10a000018, 58a3275960087bc10a00000f,
58a342e760087bc10a00001c, 58bd645702b8c60953000010, 58bc8e5002b8c60953000006,
58bc8e7a02b8c60953000007, 58a1da4e78275d0c4a000059, 58bcb83d02b8c6095300000f,
58bc9a5002b8c60953000008, 589dee3778275d0c4a000050, 58a32efe60087bc10a000013,
58a327bf60087bc10a000011, 58bca08702b8c6095300000a, 58bc9dbb02b8c60953000009,
58c99fcc02b8c60953000029, 58bca2f302b8c6095300000c, 58cbf1f402b8c60953000036,
58cdb41302b8c60953000042, 58cdb80302b8c60953000043, 58cdbaf302b8c60953000044,
58cb305c02b8c60953000032, 58caf86f02b8c60953000030, 58c1b2f702b8c6095300001e,
58bde18b02b8c60953000014, 58eb7898eda5a57672000006, 58caf88c02b8c60953000031,
58e11bf76fddd3e83e00000c, 58cdbbd102b8c60953000045, 58df779d6fddd3e83e000001,
58dbb4f08acda3452900001a, 58dbb8968acda3452900001b, 58add7699ef3c34033000009,
58dbbbf08acda3452900001d, 58dbba438acda3452900001c, 58dd2cb08acda34529000029,
58eb9542eda5a57672000007, 58f3ca5c70f9fc6f0f00000d, 58e9e7aa3e8b6dc87c00000d,
58e3d9ab3e8b6dc87c000002, 58eb4ce7eda5a57672000004, 58f3c8f470f9fc6f0f00000c,
58f3c62970f9fc6f0f00000b, 58adca6d9ef3c34033000007, 58f4b3ee70f9fc6f0f000013,
593ff22b70f9fc6f0f000023, 5a679875b750ff4455000004, 5a774585faa1ab7d2e000005,
5a6f7245b750ff4455000050, 5a787544faa1ab7d2e00000b, 5a74d9980384be9551000008,
5a6a02a3b750ff4455000021, 5a6e47b1b750ff4455000049, 5a87124561bb38fb24000001,
5a6e42f1b750ff4455000046, 5a8b1264fcd1d6a10c00001d, 5a981e66fcd1d6a10c00002f,
5a8718c861bb38fb24000008, 5a7615af83b0d9ea6600001f, 5a87140a61bb38fb24000003,
5a77072c9e632bc06600000a, 5a897601fcd1d6a10c000008, 5a871a6861bb38fb24000009,
5a74e9ad0384be955100000a, 5a79d25dfaa1ab7d2e00000f, 5a6900ebb750ff445500001d,
5a87145861bb38fb24000004, 5a871b8d61bb38fb2400000a, 5a897a06fcd1d6a10c00000b,
5a8dc6b4fcd1d6a10c000026, 5a8712af61bb38fb24000002, 5a8714e261bb38fb24000005,
5aa304f1d6d6b54f79000004, 5a981bcffcd1d6a10c00002d, 5aa3fa73d6d6b54f79000008,
5aa55b45d6d6b54f7900000d, 5a981dd0fcd1d6a10c00002e, 5a9700adfcd1d6a10c00002c,
5a9d8ffe1d1251d03b000022, 5a96c74cfcd1d6a10c000029, 5aa50086d6d6b54f7900000c,
5a95765bfcd1d6a10c000028, 5a96f40cfcd1d6a10c00002b, 5ab144fefcf4565872000012,
5aa67b4fd6d6b54f7900000f, 5abd5a62fcf4565872000031, 5abbe429fcf456587200001c,
5aaef38dfcf456587200000f, 5abce6acfcf4565872000022, 5aae6499fcf456587200000c
"""
_BIOASQ_6B_DESCRIPTION = """\
The data are intended to be used as training and development data for BioASQ 6,
which will take place during 2018. There is one file containing the data:
- BioASQ-trainingDataset6b.json
Differences with BioASQ-trainingDataset5b.json
- 500 new questions added from BioASQ5
- 48 pairs of questions with identical bodies have been merged into one
question having only one question-id, but all the documents, snippets,
concepts, RDF triples and answers of both questions of the pair.
- This normalization lead to the removal of 48 deprecated question
ids [2] from the dataset and to the update of the 48 remaining
questions [3].
- In cases where a pair of questions with identical bodies had some
inconsistency (e.g. different question type), the inconsistency has
been solved merging the pair manually consulting the BioASQ expert team.
- 12 questions were revised for various confusions that have been
identified
- In 8 questions the question type has been changed to better suit to
the question body. The change of type lead to corresponding changes
in exact answers existence and format : 54fc4e2e6ea36a810c000003,
530b01a6970c65fa6b000008, 530cf54dab4de4de0c000009,
531b2fc3b166e2b80600003c, 532819afd6d3ac6a3400000f,
532aad53d6d3ac6a34000010, 5710ade4cf1c32585100002c,
52f65f372059c6d71c000027
- In 6 questions the ideal answer has been revised :
532aad53d6d3ac6a34000010, 5710ade4cf1c32585100002c,
53147b52e3eabad021000015, 5147c8a6d24251bc05000027,
5509bd6a1180f13250000002, 58bbb71f22d3005309000016
- In 5 questions the exact answer has been revised :
5314bd7ddae131f847000006, 53130a77e3eabad02100000f,
53148a07dae131f847000002, 53147b52e3eabad021000015,
5147c8a6d24251bc05000027
- In 2 questions the question body has been revised :
52f65f372059c6d71c000027, 5503145ee9bde69634000022
- In lists of ideal answers, documents, snippets, concepts and RDF triples
any duplicate identical elements have been removed.
- Ideal answers in format of one string have been converted to a list with
one element for consistency with cases where more than one golden ideal
answers are available. (i.e. "ideal_ans1" converted to ["ideal_ans1"])
- For yesno questions: All exact answers have been normalized to "yes" or
"no" (replacing "Yes", "YES" and "No")
- For factoid questions: The format of the exact answer was normalized to a
list of strings for each question, representing a set of synonyms
answering the question (i.e. [`ans1`, `syn11`, ... ]).
- For list questions: The format of the exact answer was normalized to a
list of lists. Each internal list represents one element of the answer
as a set of synonyms
(i.e. [[`ans1`, `syn11`, `syn12`], [`ans2`], [`ans3`, `syn31`] ...]).
- Empty elements, e.g. empty lists of documents have been removed.
[1] 2251 questions : 619 factoid, 616 yesno, 531 summary, 485 list
[2] The 48 deprecated question ids are : 52f8b2902059c6d71c000053,
52f11bf22059c6d71c000005, 52f77edb2059c6d71c000028, 52ed795098d0239505000032,
56d1a9baab2fed4a47000002, 52f7d3472059c6d71c00002f, 52fbe2bf2059c6d71c00006c,
52ec961098d023950500002a, 52e8e98298d0239505000020, 56cae5125795f9a73e000024,
530cefaaad0bf1360c000007, 530cefaaad0bf1360c000005, 52d63b2803868f1b0600003a,
530cefaaad0bf1360c00000a, 516425ff298dcd4e51000051, 55191149622b194345000010,
52fa70142059c6d71c000056, 52f77f4d2059c6d71c00002a, 52efc016c8da89891000001a,
52efc001c8da898910000019, 52f896ae2059c6d71c000045, 52eceada98d023950500002d,
52efc05cc8da89891000001c, 515e078e298dcd4e51000031, 52fe54252059c6d71c000079,
514217a6d24251bc05000005, 52d1389303868f1b06000032, 530cf4d5e2bfff940c000003,
52fc946d2059c6d71c000071, 52e8e99e98d0239505000021, 52ef7786c8da898910000015,
52d8494698d0239505000007, 530cf51d5610acba0c000001, 52f637972059c6d71c000025,
52e9f99798d0239505000025, 515de572298dcd4e51000021, 52fe4ad52059c6d71c000077,
52f65bf02059c6d71c000026, 52e8e9d298d0239505000022, 52fa74052059c6d71c00005a,
52ffbddf2059c6d71c00007d, 56bc932aac7ad1001900001c, 56c02883ef6e394741000017,
52d2b75403868f1b06000035, 52f118aa2059c6d71c000003, 52e929eb98d0239505000023,
532c12f2d6d3ac6a3400001d, 52d8466298d0239505000006'
[3] The 48 questions resulting from merging with their pair have the
following ids: 5149aafcd24251bc05000045, 515db020298dcd4e51000011,
515db54c298dcd4e51000016, 51680a49298dcd4e51000062, 52b06a68f828ad283c000005,
52bf1aa503868f1b06000006, 52bf1af803868f1b06000008, 52bf1d6003868f1b0600000e,
52cb9b9b03868f1b0600002d, 52d2818403868f1b06000033, 52df887498d023950500000c,
52e0c9a298d0239505000010, 52e203bc98d0239505000011, 52e62bae98d0239505000015,
52e6c92598d0239505000019, 52e7bbf698d023950500001d, 52ea605098d0239505000028,
52ece29f98d023950500002c, 52ecf2dd98d023950500002e, 52ef7754c8da898910000014,
52f112bb2059c6d71c000002, 52f65f372059c6d71c000027, 52f77f752059c6d71c00002b,
52f77f892059c6d71c00002c, 52f89ee42059c6d71c00004d, 52f89f4f2059c6d71c00004e,
52f89fba2059c6d71c00004f, 52f89fc62059c6d71c000050, 52f89fd32059c6d71c000051,
52fa6ac72059c6d71c000055, 52fa73c62059c6d71c000058, 52fa73e82059c6d71c000059,
52fa74252059c6d71c00005b, 52fc8b772059c6d71c00006e, 52fc94572059c6d71c000070,
52fc94ae2059c6d71c000073, 52fc94db2059c6d71c000074, 52fe52702059c6d71c000078,
52fe58f82059c6d71c00007a, 530cefaaad0bf1360c000008, 530cefaaad0bf1360c000010,
533ba218fd9a95ea0d000007, 534bb147aeec6fbd07000014, 55167dec46478f2f2c00000a,
56c04412ef6e39474100001b, 56c1f01eef6e394741000046, 56c81fd15795f9a73e00000c,
587d016ed673c3eb14000002
"""
_BIOASQ_5B_DESCRIPTION = """\
The data are intended to be used as training and development data for BioASQ 5,
which will take place during 2017. There is one file containing the data:
- BioASQ-trainingDataset5b.json
The file contains the data of the first four editions of the challenge: 1799
questions with their relevant documents, snippets, concepts and rdf triples,
exact and ideal answers.
"""
_BIOASQ_4B_DESCRIPTION = """\
The data are intended to be used as training and development data for BioASQ 4,
which will take place during 2016. There is one file containing the data:
- BioASQ-trainingDataset4b.json
The file contains the data of the first three editions of the challenge: 1307
questions with their relevant documents, snippets, concepts and rdf triples,
exact and ideal answers from the first two editions and 497 questions with
similar annotations from the third editions of the challenge.
"""
_BIOASQ_3B_DESCRIPTION = """No README provided."""
_BIOASQ_2B_DESCRIPTION = """No README provided."""
_BIOASQ_BLURB_DESCRIPTION = """The BioASQ corpus contains multiple question
answering tasks annotated by biomedical experts, including yes/no, factoid, list,
and summary questions. Pertaining to our objective of comparing neural language
models, we focus on the the yes/no questions (Task 7b), and leave the inclusion
of other tasks to future work. Each question is paired with a reference text
containing multiple sentences from a PubMed abstract and a yes/no answer. We use
the official train/dev/test split of 670/75/140 questions.
See 'Domain-Specific Language Model Pretraining for Biomedical
Natural Language Processing' """
_DESCRIPTION = {
"bioasq_10b": _BIOASQ_10B_DESCRIPTION,
"bioasq_9b": _BIOASQ_9B_DESCRIPTION,
"bioasq_8b": _BIOASQ_8B_DESCRIPTION,
"bioasq_7b": _BIOASQ_7B_DESCRIPTION,
"bioasq_6b": _BIOASQ_6B_DESCRIPTION,
"bioasq_5b": _BIOASQ_5B_DESCRIPTION,
"bioasq_4b": _BIOASQ_4B_DESCRIPTION,
"bioasq_3b": _BIOASQ_3B_DESCRIPTION,
"bioasq_2b": _BIOASQ_2B_DESCRIPTION,
"bioasq_blurb": _BIOASQ_BLURB_DESCRIPTION,
}
_HOMEPAGE = "http://participants-area.bioasq.org/datasets/"
# Data access reqires registering with BioASQ.
# See http://participants-area.bioasq.org/accounts/register/
_LICENSE = "NLM_LICENSE"
_URLs = {
"bioasq_10b": ["BioASQ-training10b.zip", "Task10BGoldenEnriched.zip"],
"bioasq_9b": ["BioASQ-training9b.zip", "Task9BGoldenEnriched.zip"],
"bioasq_8b": ["BioASQ-training8b.zip", "Task8BGoldenEnriched.zip"],
"bioasq_7b": ["BioASQ-training7b.zip", "Task7BGoldenEnriched.zip"],
"bioasq_6b": ["BioASQ-training6b.zip", "Task6BGoldenEnriched.zip"],
"bioasq_5b": ["BioASQ-training5b.zip", "Task5BGoldenEnriched.zip"],
"bioasq_4b": ["BioASQ-training4b.zip", "Task4BGoldenEnriched.zip"],
"bioasq_3b": ["BioASQ-trainingDataset3b.zip", "Task3BGoldenEnriched.zip"],
"bioasq_2b": ["BioASQ-trainingDataset2b.zip", "Task2BGoldenEnriched.zip"],
"bioasq_blurb": ["BioASQ-training7b.zip", "Task7BGoldenEnriched.zip"],
}
# BLURB train and dev contain all yesno questions from the offical training split
# test is all yesno question from the official test split
_BLURB_SPLITS = {
"dev": {
"5313b049e3eabad021000013",
"553a8d78f321868558000003",
"5158a5b8d24251bc05000097",
"571e3d42bb137a4b0c000007",
"5175b97a8ed59a060a00002f",
"56c9e9d15795f9a73e00001d",
"56d19ffaab2fed4a47000001",
"518ccac0310faafe0800000b",
"56f12ca92ac5ed145900000e",
"51680a49298dcd4e51000062",
"5339ed7bd6d3ac6a34000060",
"516e5f33298dcd4e5100007e",
"5327139ad6d3ac6a3400000d",
"54e12ae3ae9738404b000004",
"5321b8579b2d7acc7e000008",
"514a4679d24251bc0500005b",
"54c12fd1f693c3b16b000001",
"52df887498d023950500000c",
"52f20d802059c6d71c00000a",
"532f0c4ed6d3ac6a3400002e",
"52b2f3b74003448f5500000c",
"52b2f1724003448f5500000b",
"515d9a42298dcd4e5100000d",
"5159b990d24251bc050000a3",
"54e12c30ae9738404b000005",
"553a6a9fbc4f83e82800001c",
"5509ec41c2af5d5b70000006",
"56cae40b5795f9a73e000022",
"51680b0e298dcd4e51000065",
"515df89e298dcd4e5100002f",
"54f49e56d0d681a040000004",
"571e3e2abb137a4b0c000008",
"515debe7298dcd4e51000026",
"56f6ab7009dd18d46b00000d",
"53302bced6d3ac6a34000039",
"5322de919b2d7acc7e000012",
"5709f212cf1c325851000020",
"5502abd1e9bde69634000008",
"516c220e298dcd4e51000071",
"5894597e7d9090f353000004",
"5895ec5e7d9090f353000015",
"58bbb8ae22d3005309000018",
"58bc58c302b8c60953000001",
"58c276bc02b8c60953000020",
"58c0825502b8c6095300001b",
"58ab1f6c9ef3c34033000002",
"58adbe999ef3c34033000005",
"58df3e408acda3452900002d",
"58dfec676fddd3e83e000006",
"58d8d0cc8acda34529000008",
"58b67fae22d3005309000009",
"58dbbbf08acda3452900001d",
"58dbba438acda3452900001c",
"58dbbdac8acda3452900001e",
"58dcbb8c8acda34529000021",
"5a468785966455904c00000d",
"5a70de5199e2c3af26000005",
"5a67a550b750ff4455000009",
"5a679875b750ff4455000004",
"5a7a44b4faa1ab7d2e000010",
"5a67ade5b750ff445500000c",
"5a8881118cb19eca6b000006",
"5a67b48cb750ff4455000010",
"5a679be1b750ff4455000005",
"5a7340962dc08e987e000017",
"5a737e233b9d13c70800000d",
"5a8dc57ffcd1d6a10c000025",
"5a6d186db750ff4455000031",
"5a70d43b99e2c3af26000003",
"5a70ec6899e2c3af2600000c",
"5a9ac4161d1251d03b000010",
"5a733d2a2dc08e987e000015",
"5a74acd80384be9551000006",
"5aa6800ad6d6b54f79000011",
"5a9d9ab94e03427e73000003",
}
}
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING]
_SOURCE_VERSION = "1.0.0"
_BIGBIO_VERSION = "1.0.0"
class BioasqTaskBDataset(datasets.GeneratorBasedBuilder):
"""
BioASQ Task B On Biomedical Semantic QA.
Creates configs for BioASQ2 through BioASQ10.
"""
DEFAULT_CONFIG_NAME = "bioasq_9b_source"
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
BIGBIO_VERSION = datasets.Version(_BIGBIO_VERSION)
# BioASQ2 through BioASQ10
BUILDER_CONFIGS = []
for version in range(2, 11):
BUILDER_CONFIGS.append(
BigBioConfig(
name=f"bioasq_{version}b_source",
version=SOURCE_VERSION,
description=f"bioasq{version} Task B source schema",
schema="source",
subset_id=f"bioasq_{version}b",
)
)
BUILDER_CONFIGS.append(
BigBioConfig(
name=f"bioasq_{version}b_bigbio_qa",
version=BIGBIO_VERSION,
description=f"bioasq{version} Task B in simplified BigBio schema",
schema="bigbio_qa",
subset_id=f"bioasq_{version}b",
)
)
# BLURB Benchmark config https://microsoft.github.io/BLURB/
BUILDER_CONFIGS.append(
BigBioConfig(
name=f"bioasq_blurb_bigbio_qa",
version=BIGBIO_VERSION,
description=f"BLURB benchmark in simplified BigBio schema",
schema="bigbio_qa",
subset_id=f"bioasq_blurb",
)
)
def _info(self):
# BioASQ Task B source schema
if self.config.schema == "source":
features = datasets.Features(
{
"id": datasets.Value("string"),
"type": datasets.Value("string"),
"body": datasets.Value("string"),
"documents": datasets.Sequence(datasets.Value("string")),
"concepts": datasets.Sequence(datasets.Value("string")),
"ideal_answer": datasets.Sequence(datasets.Value("string")),
"exact_answer": datasets.Sequence(datasets.Value("string")),
"triples": [
{
"p": datasets.Value("string"),
"s": datasets.Value("string"),
"o": datasets.Value("string"),
}
],
"snippets": [
{
"offsetInBeginSection": datasets.Value("int32"),
"offsetInEndSection": datasets.Value("int32"),
"text": datasets.Value("string"),
"beginSection": datasets.Value("string"),
"endSection": datasets.Value("string"),
"document": datasets.Value("string"),
}
],
}
)
# simplified schema for QA tasks
elif self.config.schema == "bigbio_qa":
features = qa_features
return datasets.DatasetInfo(
description=_DESCRIPTION[self.config.subset_id],
features=features,
supervised_keys=None,
homepage=_HOMEPAGE,
license=str(_LICENSE),
citation=_CITATION,
)
def _dump_gold_json(self, data_dir):
"""
BioASQ test data is split into multiple records {9B1_golden.json,...,9B5_golden.json}
We combine these files into a single test set file 9Bx_golden.json
"""
# BLURB is based on version 7
version = (
re.search(r"bioasq_([0-9]+)b", self.config.subset_id).group(1)
if "blurb" not in self.config.name
else "7"
)
gold_fpath = os.path.join(
data_dir, f"Task{version}BGoldenEnriched/bx_golden.json"
)
if not os.path.exists(gold_fpath):
# combine all gold json files
filelist = glob.glob(os.path.join(data_dir, "*/*.json"))
data = {"questions": []}
for fname in sorted(filelist):
with open(fname, "rt", encoding="utf-8") as file:
data["questions"].extend(json.load(file)["questions"])
# dump gold to json
with open(gold_fpath, "wt", encoding="utf-8") as file:
json.dump(data, file, indent=2)
return f"Task{version}BGoldenEnriched/bx_golden.json"
def _blurb_split_generator(self, train_dir, test_dir):
"""
Create splits for BLURB Benchmark
"""
gold_fpath = self._dump_gold_json(test_dir)
# create train/dev splits from yesno questions
train_fpath = os.path.join(train_dir, "blurb_bioasq_train.json")
dev_fpath = os.path.join(train_dir, "blurb_bioasq_dev.json")
blurb_splits = {
"train": {"questions": []},
"dev": {"questions": []},
"test": {"questions": []},
}
if not os.path.exists(train_fpath):
data_fpath = os.path.join(train_dir, "BioASQ-training7b/trainining7b.json")
with open(data_fpath, "rt", encoding="utf-8") as file:
data = json.load(file)
for record in data["questions"]:
if record["type"] != "yesno":
continue
if record["id"] in _BLURB_SPLITS["dev"]:
blurb_splits["dev"]["questions"].append(record)
else:
blurb_splits["train"]["questions"].append(record)
with open(train_fpath, "wt", encoding="utf-8") as file:
json.dump(blurb_splits["train"], file, indent=2)
with open(dev_fpath, "wt", encoding="utf-8") as file:
json.dump(blurb_splits["dev"], file, indent=2)
# create test split from yesno questions
with open(os.path.join(test_dir, gold_fpath), "rt", encoding="utf-8") as file:
data = json.load(file)
for record in data["questions"]:
if record["type"] != "yesno":
continue
blurb_splits["test"]["questions"].append(record)
test_fpath = os.path.join(test_dir, "blurb_bioasq_test.json")
with open(test_fpath, "wt", encoding="utf-8") as file:
json.dump(blurb_splits["test"], file, indent=2)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": train_fpath,
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={
"filepath": dev_fpath,
"split": "dev",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": test_fpath,
"split": "test",
},
),
]
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
if self.config.data_dir is None:
raise ValueError(
"This is a local dataset. Please pass the data_dir kwarg to load_dataset."
)
train_dir, test_dir = dl_manager.download_and_extract(
[
os.path.join(self.config.data_dir, _url)
for _url in _URLs[self.config.subset_id]
]
)
# create gold dump and get path
gold_fpath = self._dump_gold_json(test_dir)
# older versions of bioasq have different folder formats
train_fpaths = {
"bioasq_2b": "BioASQ_2013_TaskB/BioASQ-trainingDataset2b.json",
"bioasq_3b": "BioASQ-trainingDataset3b.json",
"bioasq_4b": "BioASQ-training4b/BioASQ-trainingDataset4b.json",
"bioasq_5b": "BioASQ-training5b/BioASQ-trainingDataset5b.json",
"bioasq_6b": "BioASQ-training6b/BioASQ-trainingDataset6b.json",
"bioasq_7b": "BioASQ-training7b/trainining7b.json",
"bioasq_8b": "training8b.json", # HACK - this zipfile strips the dirname
"bioasq_9b": "BioASQ-training9b/training9b.json",
"bioasq_10b": "BioASQ-training10b/training10b.json",
}
# BLURB has custom train/dev/test splits based on Task 7B
if "blurb" in self.config.name:
return self._blurb_split_generator(train_dir, test_dir)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={
"filepath": os.path.join(
train_dir, train_fpaths[self.config.subset_id]
),
"split": "train",
},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": os.path.join(test_dir, gold_fpath),
"split": "test",
},
),
]
def _get_exact_answer(self, record):
"""The value exact_answer can be in different formats based on question type."""
if record["type"] == "yesno":
exact_answer = [record["exact_answer"]]
elif record["type"] == "summary":
exact_answer = []
# summary question types only have an ideal answer, so use that for bigbio
if self.config.schema == "bigbio_qa":
exact_answer = (
record["ideal_answer"]
if isinstance(record["ideal_answer"], list)
else [record["ideal_answer"]]
)
elif record["type"] == "list":
exact_answer = record["exact_answer"]
elif record["type"] == "factoid":
# older version of bioasq sometimes represent this as as string
exact_answer = (
record["exact_answer"]
if isinstance(record["exact_answer"], list)
else [record["exact_answer"]]
)
return exact_answer
def _generate_examples(self, filepath, split):
"""Yields examples as (key, example) tuples."""
if self.config.schema == "source":
with open(filepath, encoding="utf-8") as file:
data = json.load(file)
for i, record in enumerate(data["questions"]):
yield i, {
"id": record["id"],
"type": record["type"],
"body": record["body"],
"documents": record["documents"],
"concepts": record["concepts"] if "concepts" in record else [],
"triples": record["triples"] if "triples" in record else [],
"ideal_answer": record["ideal_answer"]
if isinstance(record["ideal_answer"], list)
else [record["ideal_answer"]],
"exact_answer": self._get_exact_answer(record),
"snippets": record["snippets"] if "snippets" in record else [],
}
elif self.config.schema == "bigbio_qa":
# NOTE: Years 2014-2016 (BioASQ2-BioASQ4) have duplicate records
cache = set()
with open(filepath, encoding="utf-8") as file:
uid = 0
data = json.load(file)
for record in data["questions"]:
# for questions that do not have snippets, skip
if "snippets" not in record:
continue
for i, snippet in enumerate(record["snippets"]):
key = f'{record["id"]}_{i}'
# ignore duplicate records
if key not in cache:
cache.add(key)
yield uid, {
"id": key,
"document_id": snippet["document"],
"question_id": record["id"],
"question": record["body"],
"type": record["type"],
"choices": [],
"context": snippet["text"],
"answer": self._get_exact_answer(record),
}
uid += 1
|