--- license: mit language: - en --- # Dataset Card for AGIEval ## Dataset Description - **Homepage:** https://github.com/microsoft/AGIEval/blob/main/README.md - **Repository:** https://github.com/microsoft/AGIEval - **Paper:** https://arxiv.org/abs/2304.06364 ### Dataset Summary AGIEval is a human-centric benchmark specifically designed to evaluate the general abilities of foundation models in tasks pertinent to human cognition and problem-solving. This benchmark is derived from 20 official, public, and high-standard admission and qualification exams intended for general human test-takers, such as general college admission tests (e.g., Chinese College Entrance Exam (Gaokao) and American SAT), law school admission tests, math competitions, lawyer qualification tests, and national civil service exams. ### Citation Information Dataset taken from the AGIEval Repo. ``` @misc{zhong2023agieval, title={AGIEval: A Human-Centric Benchmark for Evaluating Foundation Models}, author={Wanjun Zhong and Ruixiang Cui and Yiduo Guo and Yaobo Liang and Shuai Lu and Yanlin Wang and Amin Saied and Weizhu Chen and Nan Duan}, year={2023}, eprint={2304.06364}, archivePrefix={arXiv}, primaryClass={cs.CL} } ``` ### Citation for each dataset: ``` @inproceedings{ling-etal-2017-program, title = "Program Induction by Rationale Generation: Learning to Solve and Explain Algebraic Word Problems", author = "Ling, Wang and Yogatama, Dani and Dyer, Chris and Blunsom, Phil", booktitle = "Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)", month = jul, year = "2017", address = "Vancouver, Canada", publisher = "Association for Computational Linguistics", url = "https://aclanthology.org/P17-1015", doi = "10.18653/v1/P17-1015", pages = "158--167", abstract = "Solving algebraic word problems requires executing a series of arithmetic operations{---}a program{---}to obtain a final answer. However, since programs can be arbitrarily complicated, inducing them directly from question-answer pairs is a formidable challenge. To make this task more feasible, we solve these problems by generating answer rationales, sequences of natural language and human-readable mathematical expressions that derive the final answer through a series of small steps. Although rationales do not explicitly specify programs, they provide a scaffolding for their structure via intermediate milestones. To evaluate our approach, we have created a new 100,000-sample dataset of questions, answers and rationales. Experimental results show that indirect supervision of program learning via answer rationales is a promising strategy for inducing arithmetic programs.", } @inproceedings{hendrycksmath2021, title={Measuring Mathematical Problem Solving With the MATH Dataset}, author={Dan Hendrycks and Collin Burns and Saurav Kadavath and Akul Arora and Steven Basart and Eric Tang and Dawn Song and Jacob Steinhardt}, journal={NeurIPS}, year={2021} } @inproceedings{Liu2020LogiQAAC, title={LogiQA: A Challenge Dataset for Machine Reading Comprehension with Logical Reasoning}, author={Jian Liu and Leyang Cui and Hanmeng Liu and Dandan Huang and Yile Wang and Yue Zhang}, booktitle={International Joint Conference on Artificial Intelligence}, year={2020} } @inproceedings{zhong2019jec, title={JEC-QA: A Legal-Domain Question Answering Dataset}, author={Zhong, Haoxi and Xiao, Chaojun and Tu, Cunchao and Zhang, Tianyang and Liu, Zhiyuan and Sun, Maosong}, booktitle={Proceedings of AAAI}, year={2020}, } @article{Wang2021FromLT, title={From LSAT: The Progress and Challenges of Complex Reasoning}, author={Siyuan Wang and Zhongkun Liu and Wanjun Zhong and Ming Zhou and Zhongyu Wei and Zhumin Chen and Nan Duan}, journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing}, year={2021}, volume={30}, pages={2201-2216} } ```