# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """LogiQA dataset.""" import datasets import json import ast import pandas as pd import csv _CITATION = """\ @ARTICLE{10174688, author={Liu, Hanmeng and Liu, Jian and Cui, Leyang and Teng, Zhiyang and Duan, Nan and Zhou, Ming and Zhang, Yue}, journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing}, title={LogiQA 2.0 — An Improved Dataset for Logical Reasoning in Natural Language Understanding}, year={2023}, volume={}, number={}, pages={1-16}, doi={10.1109/TASLP.2023.3293046}} """ _HOMEPAGE = "https://github.com/csitfun/LogiQA2.0/tree/main" _LICENSE = ( "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License" ) HEAD = 'https://raw.githubusercontent.com/microsoft/AGIEval/main/data/v1/' _DESCRIPTION = "AGIEval is a human-centric benchmark specifically designed to evaluate the general abilities of foundation models in tasks pertinent to human cognition and problem-solving. This benchmark is derived from 20 official, public, and high-standard admission and qualification exams intended for general human test-takers, such as general college admission tests" _URLS = { "sat_en": { "test": HEAD + 'sat-en.jsonl', }, "sat_en_wop": { "test": HEAD + 'sat-en-without-passage.jsonl', }, "sat_math": { "test": HEAD + 'sat-math.jsonl' }, "lsat_ar": { "test": HEAD + 'lsat-ar.jsonl' }, "lsat_lr": { "test": HEAD + 'lsat-lr.jsonl' }, "lsat_rc": { "test": HEAD + 'lsat-rc.jsonl' }, "logiqa": { "test": HEAD + 'logiqa-en.jsonl' }, "aqua_rat": { "test": HEAD + 'aqua-rat.jsonl' }, 'math_agieval': { "test": HEAD + 'math.jsonl' }, 'few_shot': { 'few_shot': 'https://raw.githubusercontent.com/microsoft/AGIEval/main/data/few_shot_prompts.csv' } } class AgiEval(datasets.GeneratorBasedBuilder): """TODO: Short description of my dataset.""" VERSION = datasets.Version("2.0.0") BUILDER_CONFIGS = [ datasets.BuilderConfig( name="aqua_rat", version=VERSION, description=_DESCRIPTION, ), datasets.BuilderConfig( name="sat_en", version=VERSION, description=_DESCRIPTION, ), datasets.BuilderConfig( name="sat_en_wop", version=VERSION, description=_DESCRIPTION, ), datasets.BuilderConfig( name="sat_math", version=VERSION, description=_DESCRIPTION, ), datasets.BuilderConfig( name="lsat_ar", version=VERSION, description=_DESCRIPTION, ), datasets.BuilderConfig( name="lsat_lr", version=VERSION, description=_DESCRIPTION, ), datasets.BuilderConfig( name="lsat_rc", version=VERSION, description=_DESCRIPTION, ), datasets.BuilderConfig( name="logiqa", version=VERSION, description=_DESCRIPTION, ), datasets.BuilderConfig( name="math_agieval", version=VERSION, description=_DESCRIPTION, ), ] DEFAULT_CONFIG_NAME = "aqua_rat" def _info(self): if self.config.name == "aqua_rat": features = datasets.Features( { "question": datasets.Value("string"), "options": datasets.features.Sequence(datasets.Value("string")), "label": datasets.ClassLabel(num_classes=5, names=["A", "B", "C", "D", "E"]), "solution": datasets.Value("string"), } ) elif self.config.name in ("sat_en", "sat_math"): features = datasets.Features( {"passage": datasets.Value("string"), "question": datasets.Value("string"), "options": datasets.features.Sequence(datasets.Value("string")), "label": datasets.ClassLabel(num_classes=4, names=["A", "B", "C", "D"]), "solution": datasets.Value("string"), } ) elif self.config.name == "sat_en_wop": features = datasets.Features( {"question": datasets.Value("string"), "options": datasets.features.Sequence(datasets.Value("string")), "label": datasets.ClassLabel(num_classes=4, names=["A", "B", "C", "D"]), "solution": datasets.Value("string"), } ) elif self.config.name == "logiqa": # remove solution from other features = datasets.Features( {"passage": datasets.Value("string"), "question": datasets.Value("string"), "options": datasets.features.Sequence(datasets.Value("string")), "label": datasets.ClassLabel(num_classes=4, names=["A", "B", "C", "D"]), "solution": datasets.Value("string"), } ) elif self.config.name == "math_agieval": features = datasets.Features( {"question": datasets.Value("string"), "answer": datasets.Value("string"), "solution": datasets.Value("string"), "level": datasets.Value("int32"), "type": datasets.Value("string"), } ) elif self.config.name in ['lsat_lr', 'lsat_rc', 'lsat_ar']: features = datasets.Features( {"passage": datasets.Value("string"), "question": datasets.Value("string"), "options": datasets.features.Sequence(datasets.Value("string")), "label": datasets.ClassLabel(num_classes=5, names=["A", "B", "C", "D", "E"]), "solution": datasets.Value("string"), } ) return datasets.DatasetInfo( description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION, ) def _split_generators(self, dl_manager): _urls = _URLS[self.config.name] urls = { "test": _urls["test"], "few_shot": _URLS["few_shot"]["few_shot"], } data_dir = dl_manager.download_and_extract(urls) splits = [datasets.SplitGenerator( name=datasets.Split.TEST, gen_kwargs={"filepath": data_dir["test"], "split": "test"}, ), datasets.SplitGenerator( name="few_shot", gen_kwargs={"filepath": data_dir["few_shot"], "split": "few_shot"}, )] return splits def _generate_examples(self, filepath, split): # Mapping for column names in CSV to dataset names names = {'aqua_rat': 'aqua-rat', 'sat_en': 'sat-en', 'sat_en_wop': 'sat-en','sat_math': 'sat-math', 'lsat_ar': 'lsat-ar', 'lsat_lr': 'lsat-lr', 'lsat_rc': 'lsat-rc', 'logiqa': 'logiqa-en', 'math_agieval': 'math'} if split == "few_shot": # Load the data from the CSV df = pd.read_csv(filepath, keep_default_na=False) # Extract samples and explanations samples = df[df.index % 2 == 0].reset_index(drop=True) explanations = df[df.index % 2 != 0].reset_index(drop=True) for key in range(samples.shape[0]): try: data = ast.literal_eval(samples[names[self.config.name]][key]) explanation_row = explanations[names[self.config.name]][key] if self.config.name == "aqua_rat": yield key, { "question": data["question"], "options": data["options"], "label": data["label"], "solution": str(explanation_row), } elif self.config.name == "logiqa": yield key, { "passage": data["passage"], "question": data["question"], "options": data["options"], "label": data["label"], "solution": str(explanation_row), } elif self.config.name == "math_agieval": if not data.get("level"): data["level"] = data['other']['level'] if not data.get("type"): data["type"] = data['other']['type'] yield key, { "question": data["question"], "answer": data["answer"], "level": data["level"], "type": data["type"], "solution": str(explanation_row), } elif self.config.name in ("sat_en", "sat_math"): yield key, { "passage": data["passage"], "question": data["question"], "options": data["options"], "label": data["label"], "solution": str(explanation_row), } elif self.config.name == "sat_en_wop": yield key, { "question": data["question"], "options": data["options"], "label": data["label"], "solution": str(explanation_row), } elif self.config.name in ['lsat_lr', 'lsat_rc', 'lsat_ar']: yield key, { "passage": data["passage"], "question": data["question"], "options": data["options"], "label": data["label"], "solution": str(explanation_row), } except: pass else: with open(filepath, encoding="utf-8") as f: for key, row in enumerate(f): data = json.loads(row) if self.config.name == "aqua_rat": yield key, { "question": data["question"], "options": data["options"], "label": data["label"], "solution": data["other"]["solution"], } elif self.config.name == "logiqa": yield key, { "passage": data["passage"], "question": data["question"], "options": data["options"], "label": data["label"], "solution": data["label"], } elif self.config.name == "math_agieval": if not data.get("level"): data["level"] = data['other']['level'] if not data.get("type"): data["type"] = data['other']['type'] yield key, { "question": data["question"], "answer": data["answer"], "solution": data["other"]["solution"], "level": data["level"], "type": data["type"], } elif self.config.name in ("sat_en", "sat_math"): label_index = "ABCDE".index(data["label"]) if label_index > len(data["options"]) - 1: continue else: yield key, { "passage": data["passage"], "question": data["question"], "options": data["options"], "label": data["label"], "solution": data["other"]["solution"], } elif self.config.name == "sat_en_wop": yield key, { "question": data["question"], "options": data["options"], "label": data["label"], "solution": data["other"]["solution"], } elif self.config.name in ['lsat_lr', 'lsat_rc', 'lsat_ar']: yield key, { "passage": data["passage"], "question": data["question"], "options": data["options"], "label": data["label"], "solution": data["label"], }