agieval / agieval.py
baber's picture
added sat w/o passage
c4269fd
raw
history blame
14.2 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""LogiQA dataset."""
import datasets
import json
import ast
import pandas as pd
import csv
_CITATION = """\
@ARTICLE{10174688,
author={Liu, Hanmeng and Liu, Jian and Cui, Leyang and Teng, Zhiyang and Duan, Nan and Zhou, Ming and Zhang, Yue},
journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},
title={LogiQA 2.0 — An Improved Dataset for Logical Reasoning in Natural Language Understanding},
year={2023},
volume={},
number={},
pages={1-16},
doi={10.1109/TASLP.2023.3293046}}
"""
_DESCRIPTION = """\
The dataset is an amendment and re-annotation of LogiQA in 2020, a large-scale logical reasoning reading comprehension dataset adapted from the Chinese Civil Service Examination. We increase the data size, refine the texts with manual translation by professionals, and improve the quality by removing items with distinctive cultural features like Chinese idioms. Furthermore, we conduct a fine-grained annotation on the dataset and turn it into a two-way natural language inference (NLI) task, resulting in 35k premise-hypothesis pairs with gold labels, making it the first large-scale NLI dataset for complex logical reasoning
"""
_HOMEPAGE = "https://github.com/csitfun/LogiQA2.0/tree/main"
_LICENSE = (
"Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License"
)
HEAD = 'https://raw.githubusercontent.com/microsoft/AGIEval/main/data/v1/'
_URLS = {
"sat_en": {
"test": HEAD + 'sat-en.jsonl',
},
"sat_en_wop": {
"test": HEAD + 'sat-en-without-passage.jsonl',
},
"sat_math": {
"test": HEAD + 'sat-math.jsonl'
},
"lsat_ar": {
"test": HEAD + 'lsat-ar.jsonl'
},
"lsat_lr": {
"test": HEAD + 'lsat-lr.jsonl'
},
"lsat_rc": {
"test": HEAD + 'lsat-rc.jsonl'
},
"logiqa": {
"test": HEAD + 'logiqa-en.jsonl'
},
"aqua_rat": {
"test": HEAD + 'aqua-rat.jsonl'
},
'math_agieval': {
"test": HEAD + 'math.jsonl'
},
'few_shot': {
'few_shot': 'https://raw.githubusercontent.com/microsoft/AGIEval/main/data/few_shot_prompts.csv'
}
}
class AgiEval(datasets.GeneratorBasedBuilder):
"""TODO: Short description of my dataset."""
VERSION = datasets.Version("2.0.1")
# 25/08/2023: Removed row 56 of `sat_en`(label > num_of_choices).
BUILDER_CONFIGS = [
datasets.BuilderConfig(
name="aqua_rat",
version=VERSION,
description="",
),
datasets.BuilderConfig(
name="sat_en",
version=VERSION,
description="",
),
datasets.BuilderConfig(
name="sat_en_wop",
version=VERSION,
description="",
),
datasets.BuilderConfig(
name="sat_math",
version=VERSION,
description="",
),
datasets.BuilderConfig(
name="lsat_ar",
version=VERSION,
description="",
),
datasets.BuilderConfig(
name="lsat_lr",
version=VERSION,
description="",
),
datasets.BuilderConfig(
name="lsat_rc",
version=VERSION,
description="",
),
datasets.BuilderConfig(
name="logiqa",
version=VERSION,
description="",
),
datasets.BuilderConfig(
name="math_agieval",
version=VERSION,
description="",
),
]
DEFAULT_CONFIG_NAME = "aqua_rat"
def _info(self):
if self.config.name == "aqua_rat":
features = datasets.Features(
{
"question": datasets.Value("string"),
"options": datasets.features.Sequence(datasets.Value("string")),
"label": datasets.ClassLabel(num_classes=5, names=["A", "B", "C", "D", "E"]),
"solution": datasets.Value("string"),
}
)
elif self.config.name in ("sat_en", "sat_math"):
features = datasets.Features(
{"passage": datasets.Value("string"),
"question": datasets.Value("string"),
"options": datasets.features.Sequence(datasets.Value("string")),
"label": datasets.ClassLabel(num_classes=4, names=["A", "B", "C", "D"]),
"solution": datasets.Value("string"),
}
)
elif self.config.name == "sat_en_wop":
features = datasets.Features(
{"question": datasets.Value("string"),
"options": datasets.features.Sequence(datasets.Value("string")),
"label": datasets.ClassLabel(num_classes=4, names=["A", "B", "C", "D"]),
"solution": datasets.Value("string"),
}
)
elif self.config.name == "logiqa":
# remove solution from other
features = datasets.Features(
{"passage": datasets.Value("string"),
"question": datasets.Value("string"),
"options": datasets.features.Sequence(datasets.Value("string")),
"label": datasets.ClassLabel(num_classes=4, names=["A", "B", "C", "D"]),
"solution": datasets.Value("string"),
}
)
elif self.config.name == "math_agieval":
features = datasets.Features(
{"question": datasets.Value("string"),
"answer": datasets.Value("string"),
"solution": datasets.Value("string"),
"level": datasets.Value("int32"),
"type": datasets.Value("string"),
}
)
elif self.config.name in ['lsat_lr', 'lsat_rc', 'lsat_ar']:
features = datasets.Features(
{"passage": datasets.Value("string"),
"question": datasets.Value("string"),
"options": datasets.features.Sequence(datasets.Value("string")),
"label": datasets.ClassLabel(num_classes=5, names=["A", "B", "C", "D", "E"]),
"solution": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
_urls = _URLS[self.config.name]
urls = {
"test": _urls["test"],
"few_shot": _URLS["few_shot"]["few_shot"],
}
data_dir = dl_manager.download_and_extract(urls)
splits = [datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": data_dir["test"], "split": "test"},
), datasets.SplitGenerator(
name="few_shot",
gen_kwargs={"filepath": data_dir["few_shot"], "split": "few_shot"},
)]
return splits
def _generate_examples(self, filepath, split):
# Mapping for column names in CSV to dataset names
names = {'aqua_rat': 'aqua-rat', 'sat_en': 'sat-en', 'sat_en_wop': 'sat-en','sat_math': 'sat-math',
'lsat_ar': 'lsat-ar', 'lsat_lr': 'lsat-lr', 'lsat_rc': 'lsat-rc',
'logiqa': 'logiqa-en', 'math_agieval': 'math'}
if split == "few_shot":
# Load the data from the CSV
df = pd.read_csv(filepath, keep_default_na=False)
# Extract samples and explanations
samples = df[df.index % 2 == 0].reset_index(drop=True)
explanations = df[df.index % 2 != 0].reset_index(drop=True)
for key in range(samples.shape[0]):
try:
data = ast.literal_eval(samples[names[self.config.name]][key])
explanation_row = explanations[names[self.config.name]][key]
if self.config.name == "aqua_rat":
yield key, {
"question": data["question"],
"options": data["options"],
"label": data["label"],
"solution": str(explanation_row),
}
elif self.config.name == "logiqa":
yield key, {
"passage": data["passage"],
"question": data["question"],
"options": data["options"],
"label": data["label"],
"solution": str(explanation_row),
}
elif self.config.name == "math_agieval":
if not data.get("level"):
data["level"] = data['other']['level']
if not data.get("type"):
data["type"] = data['other']['type']
yield key, {
"question": data["question"],
"answer": data["answer"],
"level": data["level"],
"type": data["type"],
"solution": str(explanation_row),
}
elif self.config.name in ("sat_en", "sat_math"):
yield key, {
"passage": data["passage"],
"question": data["question"],
"options": data["options"],
"label": data["label"],
"solution": str(explanation_row),
}
elif self.config.name == "sat_en_wop":
yield key, {
"question": data["question"],
"options": data["options"],
"label": data["label"],
"solution": str(explanation_row),
}
elif self.config.name in ['lsat_lr', 'lsat_rc', 'lsat_ar']:
yield key, {
"passage": data["passage"],
"question": data["question"],
"options": data["options"],
"label": data["label"],
"solution": str(explanation_row),
}
except:
pass
else:
with open(filepath, encoding="utf-8") as f:
for key, row in enumerate(f):
data = json.loads(row)
if self.config.name == "aqua_rat":
yield key, {
"question": data["question"],
"options": data["options"],
"label": data["label"],
"solution": data["other"]["solution"],
}
elif self.config.name == "logiqa":
yield key, {
"passage": data["passage"],
"question": data["question"],
"options": data["options"],
"label": data["label"],
"solution": data["label"],
}
elif self.config.name == "math_agieval":
if not data.get("level"):
data["level"] = data['other']['level']
if not data.get("type"):
data["type"] = data['other']['type']
yield key, {
"question": data["question"],
"answer": data["answer"],
"solution": data["other"]["solution"],
"level": data["level"],
"type": data["type"],
}
elif self.config.name in ("sat_en", "sat_math"):
label_index = "ABCDE".index(data["label"])
if label_index > len(data["options"]) - 1:
continue
else:
yield key, {
"passage": data["passage"],
"question": data["question"],
"options": data["options"],
"label": data["label"],
"solution": data["other"]["solution"],
}
elif self.config.name == "sat_en_wop":
yield key, {
"question": data["question"],
"options": data["options"],
"label": data["label"],
"solution": str(explanation_row),
}
elif self.config.name in ['lsat_lr', 'lsat_rc', 'lsat_ar']:
yield key, {
"passage": data["passage"],
"question": data["question"],
"options": data["options"],
"label": data["label"],
"solution": data["label"],
}