|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""LogiQA dataset.""" |
|
|
|
import datasets |
|
import json |
|
import ast |
|
import pandas as pd |
|
import csv |
|
|
|
_CITATION = """\ |
|
@ARTICLE{10174688, |
|
author={Liu, Hanmeng and Liu, Jian and Cui, Leyang and Teng, Zhiyang and Duan, Nan and Zhou, Ming and Zhang, Yue}, |
|
journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing}, |
|
title={LogiQA 2.0 — An Improved Dataset for Logical Reasoning in Natural Language Understanding}, |
|
year={2023}, |
|
volume={}, |
|
number={}, |
|
pages={1-16}, |
|
doi={10.1109/TASLP.2023.3293046}} |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/csitfun/LogiQA2.0/tree/main" |
|
|
|
_LICENSE = ( |
|
"Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License" |
|
) |
|
HEAD = 'https://raw.githubusercontent.com/microsoft/AGIEval/main/data/v1/' |
|
|
|
_DESCRIPTION = "AGIEval is a human-centric benchmark specifically designed to evaluate the general abilities of foundation models in tasks pertinent to human cognition and problem-solving. This benchmark is derived from 20 official, public, and high-standard admission and qualification exams intended for general human test-takers, such as general college admission tests" |
|
|
|
_URLS = { |
|
"sat_en": { |
|
"test": HEAD + 'sat-en.jsonl', |
|
}, |
|
"sat_en_wop": { |
|
"test": HEAD + 'sat-en-without-passage.jsonl', |
|
}, |
|
"sat_math": { |
|
"test": HEAD + 'sat-math.jsonl' |
|
}, |
|
"lsat_ar": { |
|
"test": HEAD + 'lsat-ar.jsonl' |
|
}, |
|
"lsat_lr": { |
|
"test": HEAD + 'lsat-lr.jsonl' |
|
}, |
|
"lsat_rc": { |
|
"test": HEAD + 'lsat-rc.jsonl' |
|
}, |
|
"logiqa": { |
|
"test": HEAD + 'logiqa-en.jsonl' |
|
}, |
|
"aqua_rat": { |
|
"test": HEAD + 'aqua-rat.jsonl' |
|
}, |
|
'math_agieval': { |
|
"test": HEAD + 'math.jsonl' |
|
}, |
|
'few_shot': { |
|
'few_shot': 'https://raw.githubusercontent.com/microsoft/AGIEval/main/data/few_shot_prompts.csv' |
|
} |
|
|
|
} |
|
|
|
|
|
class AgiEval(datasets.GeneratorBasedBuilder): |
|
"""TODO: Short description of my dataset.""" |
|
|
|
VERSION = datasets.Version("2.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="aqua_rat", |
|
version=VERSION, |
|
description=_DESCRIPTION, |
|
), |
|
datasets.BuilderConfig( |
|
name="sat_en", |
|
version=VERSION, |
|
description=_DESCRIPTION, |
|
), |
|
datasets.BuilderConfig( |
|
name="sat_en_wop", |
|
version=VERSION, |
|
description=_DESCRIPTION, |
|
), |
|
datasets.BuilderConfig( |
|
name="sat_math", |
|
version=VERSION, |
|
description=_DESCRIPTION, |
|
), |
|
datasets.BuilderConfig( |
|
name="lsat_ar", |
|
version=VERSION, |
|
description=_DESCRIPTION, |
|
), |
|
datasets.BuilderConfig( |
|
name="lsat_lr", |
|
version=VERSION, |
|
description=_DESCRIPTION, |
|
), |
|
datasets.BuilderConfig( |
|
name="lsat_rc", |
|
version=VERSION, |
|
description=_DESCRIPTION, |
|
), |
|
datasets.BuilderConfig( |
|
name="logiqa", |
|
version=VERSION, |
|
description=_DESCRIPTION, |
|
), |
|
datasets.BuilderConfig( |
|
name="math_agieval", |
|
version=VERSION, |
|
description=_DESCRIPTION, |
|
), |
|
] |
|
DEFAULT_CONFIG_NAME = "aqua_rat" |
|
|
|
def _info(self): |
|
|
|
if self.config.name == "aqua_rat": |
|
features = datasets.Features( |
|
{ |
|
"question": datasets.Value("string"), |
|
"options": datasets.features.Sequence(datasets.Value("string")), |
|
"label": datasets.ClassLabel(num_classes=5, names=["A", "B", "C", "D", "E"]), |
|
"solution": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.name in ("sat_en", "sat_math"): |
|
features = datasets.Features( |
|
{"passage": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"options": datasets.features.Sequence(datasets.Value("string")), |
|
"label": datasets.ClassLabel(num_classes=4, names=["A", "B", "C", "D"]), |
|
"solution": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.name == "sat_en_wop": |
|
features = datasets.Features( |
|
{"question": datasets.Value("string"), |
|
"options": datasets.features.Sequence(datasets.Value("string")), |
|
"label": datasets.ClassLabel(num_classes=4, names=["A", "B", "C", "D"]), |
|
"solution": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.name == "logiqa": |
|
|
|
features = datasets.Features( |
|
{"passage": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"options": datasets.features.Sequence(datasets.Value("string")), |
|
"label": datasets.ClassLabel(num_classes=4, names=["A", "B", "C", "D"]), |
|
"solution": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.name == "math_agieval": |
|
features = datasets.Features( |
|
{"question": datasets.Value("string"), |
|
"answer": datasets.Value("string"), |
|
"solution": datasets.Value("string"), |
|
"level": datasets.Value("int32"), |
|
"type": datasets.Value("string"), |
|
} |
|
) |
|
elif self.config.name in ['lsat_lr', 'lsat_rc', 'lsat_ar']: |
|
features = datasets.Features( |
|
{"passage": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"options": datasets.features.Sequence(datasets.Value("string")), |
|
"label": datasets.ClassLabel(num_classes=5, names=["A", "B", "C", "D", "E"]), |
|
"solution": datasets.Value("string"), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
_urls = _URLS[self.config.name] |
|
urls = { |
|
"test": _urls["test"], |
|
"few_shot": _URLS["few_shot"]["few_shot"], |
|
} |
|
data_dir = dl_manager.download_and_extract(urls) |
|
splits = [datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": data_dir["test"], "split": "test"}, |
|
), datasets.SplitGenerator( |
|
name="few_shot", |
|
gen_kwargs={"filepath": data_dir["few_shot"], "split": "few_shot"}, |
|
)] |
|
|
|
return splits |
|
|
|
def _generate_examples(self, filepath, split): |
|
|
|
names = {'aqua_rat': 'aqua-rat', 'sat_en': 'sat-en', 'sat_en_wop': 'sat-en','sat_math': 'sat-math', |
|
'lsat_ar': 'lsat-ar', 'lsat_lr': 'lsat-lr', 'lsat_rc': 'lsat-rc', |
|
'logiqa': 'logiqa-en', 'math_agieval': 'math'} |
|
|
|
if split == "few_shot": |
|
|
|
df = pd.read_csv(filepath, keep_default_na=False) |
|
|
|
|
|
samples = df[df.index % 2 == 0].reset_index(drop=True) |
|
explanations = df[df.index % 2 != 0].reset_index(drop=True) |
|
|
|
for key in range(samples.shape[0]): |
|
try: |
|
data = ast.literal_eval(samples[names[self.config.name]][key]) |
|
explanation_row = explanations[names[self.config.name]][key] |
|
if self.config.name == "aqua_rat": |
|
yield key, { |
|
"question": data["question"], |
|
"options": data["options"], |
|
"label": data["label"], |
|
"solution": str(explanation_row), |
|
} |
|
elif self.config.name == "logiqa": |
|
yield key, { |
|
"passage": data["passage"], |
|
"question": data["question"], |
|
"options": data["options"], |
|
"label": data["label"], |
|
"solution": str(explanation_row), |
|
} |
|
elif self.config.name == "math_agieval": |
|
if not data.get("level"): |
|
data["level"] = data['other']['level'] |
|
if not data.get("type"): |
|
data["type"] = data['other']['type'] |
|
yield key, { |
|
"question": data["question"], |
|
"answer": data["answer"], |
|
"level": data["level"], |
|
"type": data["type"], |
|
"solution": str(explanation_row), |
|
} |
|
elif self.config.name in ("sat_en", "sat_math"): |
|
yield key, { |
|
"passage": data["passage"], |
|
"question": data["question"], |
|
"options": data["options"], |
|
"label": data["label"], |
|
"solution": str(explanation_row), |
|
} |
|
elif self.config.name == "sat_en_wop": |
|
yield key, { |
|
"question": data["question"], |
|
"options": data["options"], |
|
"label": data["label"], |
|
"solution": str(explanation_row), |
|
} |
|
elif self.config.name in ['lsat_lr', 'lsat_rc', 'lsat_ar']: |
|
yield key, { |
|
"passage": data["passage"], |
|
"question": data["question"], |
|
"options": data["options"], |
|
"label": data["label"], |
|
"solution": str(explanation_row), |
|
} |
|
except: |
|
pass |
|
else: |
|
with open(filepath, encoding="utf-8") as f: |
|
for key, row in enumerate(f): |
|
data = json.loads(row) |
|
|
|
if self.config.name == "aqua_rat": |
|
yield key, { |
|
"question": data["question"], |
|
"options": data["options"], |
|
"label": data["label"], |
|
"solution": data["other"]["solution"], |
|
} |
|
elif self.config.name == "logiqa": |
|
yield key, { |
|
"passage": data["passage"], |
|
"question": data["question"], |
|
"options": data["options"], |
|
"label": data["label"], |
|
"solution": data["label"], |
|
} |
|
elif self.config.name == "math_agieval": |
|
if not data.get("level"): |
|
data["level"] = data['other']['level'] |
|
if not data.get("type"): |
|
data["type"] = data['other']['type'] |
|
yield key, { |
|
"question": data["question"], |
|
"answer": data["answer"], |
|
"solution": data["other"]["solution"], |
|
"level": data["level"], |
|
"type": data["type"], |
|
} |
|
|
|
elif self.config.name in ("sat_en", "sat_math"): |
|
label_index = "ABCDE".index(data["label"]) |
|
if label_index > len(data["options"]) - 1: |
|
continue |
|
else: |
|
yield key, { |
|
"passage": data["passage"], |
|
"question": data["question"], |
|
"options": data["options"], |
|
"label": data["label"], |
|
"solution": data["other"]["solution"], |
|
} |
|
elif self.config.name == "sat_en_wop": |
|
yield key, { |
|
"question": data["question"], |
|
"options": data["options"], |
|
"label": data["label"], |
|
"solution": data["other"]["solution"], |
|
} |
|
elif self.config.name in ['lsat_lr', 'lsat_rc', 'lsat_ar']: |
|
yield key, { |
|
"passage": data["passage"], |
|
"question": data["question"], |
|
"options": data["options"], |
|
"label": data["label"], |
|
"solution": data["label"], |
|
} |
|
|