File size: 13,356 Bytes
db21be4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b06755
5afa273
db21be4
 
 
 
 
 
 
 
 
 
 
 
 
6f26501
 
 
 
 
 
 
 
 
e2ddee7
6f26501
 
 
e2ddee7
6f26501
 
e2ddee7
6f26501
 
e2ddee7
6f26501
 
e2ddee7
6f26501
 
e2ddee7
6f26501
 
e2ddee7
6f26501
 
e2ddee7
6f26501
 
e2ddee7
6f26501
5afa273
e2ddee7
5afa273
e2ddee7
6f26501
 
 
52f1b88
6f26501
 
efe0a75
 
6f26501
 
 
1ea8b02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f26501
1ea8b02
6f26501
 
1ea8b02
6f26501
1ea8b02
6f26501
 
1ea8b02
6f26501
1ea8b02
 
 
 
 
 
6f26501
 
1ea8b02
6f26501
 
 
 
 
 
 
 
 
 
 
 
e2ddee7
6f26501
 
 
 
 
 
 
 
e2ddee7
 
 
 
 
 
 
 
 
c7f4ef8
 
 
a15eb14
e2ddee7
c7f4ef8
 
6b06755
c7f4ef8
 
6f26501
 
 
f7b17b9
6f26501
 
 
 
 
 
 
e2ddee7
 
6f26501
 
6b06755
6f26501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5afa273
6f26501
 
e2ddee7
 
 
 
5afa273
 
e2ddee7
5afa273
 
6f26501
 
6b06755
 
 
 
 
5afa273
6b06755
 
 
 
 
 
 
 
 
 
 
e2ddee7
 
 
 
 
 
 
6b06755
 
 
 
 
 
 
 
 
 
 
 
 
5afa273
6b06755
 
 
 
 
 
 
e2ddee7
efe0a75
 
 
 
 
 
 
6b06755
 
e2ddee7
6b06755
 
 
 
5afa273
6b06755
 
5afa273
 
 
 
e2ddee7
 
5afa273
 
 
 
 
 
 
 
 
 
 
 
6b06755
5afa273
 
 
 
 
 
 
 
 
 
 
6b06755
5afa273
e2ddee7
 
efe0a75
 
 
 
 
 
 
 
 
 
 
5afa273
 
e2ddee7
5afa273
 
 
6b06755
5afa273
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""LogiQA dataset."""

import datasets
import json
import ast
import pandas as pd
import csv

_CITATION = """\
@ARTICLE{10174688,
  author={Liu, Hanmeng and Liu, Jian and Cui, Leyang and Teng, Zhiyang and Duan, Nan and Zhou, Ming and Zhang, Yue},
  journal={IEEE/ACM Transactions on Audio, Speech, and Language Processing},
  title={LogiQA 2.0 — An Improved Dataset for Logical Reasoning in Natural Language Understanding},
  year={2023},
  volume={},
  number={},
  pages={1-16},
  doi={10.1109/TASLP.2023.3293046}}
"""

_DESCRIPTION = """\
The dataset is an amendment and re-annotation of LogiQA in 2020, a large-scale logical reasoning reading comprehension dataset adapted from the Chinese Civil Service Examination. We increase the data size, refine the texts with manual translation by professionals, and improve the quality by removing items with distinctive cultural features like Chinese idioms. Furthermore, we conduct a fine-grained annotation on the dataset and turn it into a two-way natural language inference (NLI) task, resulting in 35k premise-hypothesis pairs with gold labels, making it the first large-scale NLI dataset for complex logical reasoning
"""

_HOMEPAGE = "https://github.com/csitfun/LogiQA2.0/tree/main"

_LICENSE = (
    "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License"
)
HEAD = 'https://raw.githubusercontent.com/microsoft/AGIEval/main/data/v1/'

_URLS = {
    "sat_en": {
        "test": HEAD + 'sat-en.jsonl',
    },
    "sat_math": {
        "test": HEAD + 'sat-math.jsonl'
    },
    "lsat_ar": {
        "test": HEAD + 'lsat-ar.jsonl'
    },
    "lsat_lr": {
        "test": HEAD + 'lsat-lr.jsonl'
    },
    "lsat_rc": {
        "test": HEAD + 'lsat-rc.jsonl'
    },
    "logiqa": {
        "test": HEAD + 'logiqa-en.jsonl'
    },
    "aqua_rat": {
        "test": HEAD + 'aqua-rat.jsonl'
    },
    'math_agieval': {
        "test": HEAD + 'math.jsonl'
    },
    'few_shot': {
        'few_shot': 'https://raw.githubusercontent.com/microsoft/AGIEval/main/data/few_shot_prompts.csv'
    }

}


class AgiEval(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("2.0.1")
    # 25/08/2023: Removed row 56 of `sat_en`(label > num_of_choices).

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="aqua_rat",
            version=VERSION,
            description="",
        ),
        datasets.BuilderConfig(
            name="sat_en",
            version=VERSION,
            description="",
        ),
        datasets.BuilderConfig(
            name="sat_math",
            version=VERSION,
            description="",
        ),
        datasets.BuilderConfig(
            name="lsat_ar",
            version=VERSION,
            description="",
        ),
        datasets.BuilderConfig(
            name="lsat_lr",
            version=VERSION,
            description="",
        ),
        datasets.BuilderConfig(
            name="lsat_rc",
            version=VERSION,
            description="",
        ),
        datasets.BuilderConfig(
            name="logiqa",
            version=VERSION,
            description="",
        ),
        datasets.BuilderConfig(
            name="math_agieval",
            version=VERSION,
            description="",
        ),
    ]
    DEFAULT_CONFIG_NAME = "aqua_rat"

    def _info(self):

        if self.config.name == "aqua_rat":
            features = datasets.Features(
                {
                    "question": datasets.Value("string"),
                    "options": datasets.features.Sequence(datasets.Value("string")),
                    "label": datasets.ClassLabel(num_classes=5, names=["A", "B", "C", "D", "E"]),
                    "solution": datasets.Value("string"),
                }
            )
        elif self.config.name in ("sat_en", "sat_math"):
            features = datasets.Features(
                {"passage": datasets.Value("string"),
                 "question": datasets.Value("string"),
                 "options": datasets.features.Sequence(datasets.Value("string")),
                 "label": datasets.ClassLabel(num_classes=4, names=["A", "B", "C", "D"]),
                 "solution": datasets.Value("string"),
                 }
            )
        # elif self.config.name == "sat_math":
        #     # remove solution from other
        #     features = datasets.Features(
        #         {"question": datasets.Value("string"),
        #          "options": datasets.features.Sequence(datasets.Value("string")),
        #          "label": datasets.ClassLabel(num_classes=4, names=["A", "B", "C", "D"]),
        #          "solution": datasets.Value("string"),
        #          }
        #     )
        elif self.config.name == "logiqa":
            # remove solution from other
            features = datasets.Features(
                {"passage": datasets.Value("string"),
                 "question": datasets.Value("string"),
                 "options": datasets.features.Sequence(datasets.Value("string")),
                 "label": datasets.ClassLabel(num_classes=4, names=["A", "B", "C", "D"]),
                 "solution": datasets.Value("string"),
                 }
            )
        elif self.config.name == "math_agieval":
            features = datasets.Features(
                {"question": datasets.Value("string"),
                 "answer": datasets.Value("string"),
                 "solution": datasets.Value("string"),
                 "level": datasets.Value("int32"),
                 "type": datasets.Value("string"),
                 }
            )
        elif self.config.name in ['lsat_lr', 'lsat_rc', 'lsat_ar']:
            features = datasets.Features(
                {"passage": datasets.Value("string"),
                 "question": datasets.Value("string"),
                 "options": datasets.features.Sequence(datasets.Value("string")),
                 "label": datasets.ClassLabel(num_classes=5, names=["A", "B", "C", "D", "E"]),
                 "solution": datasets.Value("string"),
                 }
            )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        _urls = _URLS[self.config.name]
        urls = {
            "test": _urls["test"],
            "few_shot": _URLS["few_shot"]["few_shot"],
        }
        data_dir = dl_manager.download_and_extract(urls)
        splits = [datasets.SplitGenerator(
            name=datasets.Split.TEST,
            gen_kwargs={"filepath": data_dir["test"], "split": "test"},
        ), datasets.SplitGenerator(
            name="few_shot",
            gen_kwargs={"filepath": data_dir["few_shot"], "split": "few_shot"},
        )]

        return splits

    def _generate_examples(self, filepath, split):
        # Mapping for column names in CSV to dataset names
        names = {'aqua_rat': 'aqua-rat', 'sat_en': 'sat-en', 'sat_math': 'sat-math',
                 'lsat_ar': 'lsat-ar', 'lsat_lr': 'lsat-lr', 'lsat_rc': 'lsat-rc',
                 'logiqa': 'logiqa-en', 'math_agieval': 'math'}

        if split == "few_shot":
            # Load the data from the CSV
            df = pd.read_csv(filepath, keep_default_na=False)

            # Extract samples and explanations
            samples = df[df.index % 2 == 0].reset_index(drop=True)
            explanations = df[df.index % 2 != 0].reset_index(drop=True)

            for key in range(samples.shape[0]):
                try:
                    data = ast.literal_eval(samples[names[self.config.name]][key])
                    explanation_row = explanations[names[self.config.name]][key]
                    if self.config.name == "aqua_rat":
                        yield key, {
                            "question": data["question"],
                            "options": data["options"],
                            "label": data["label"],
                            "solution": str(explanation_row),
                        }
                    elif self.config.name == "logiqa":
                        yield key, {
                            "passage": data["passage"],
                            "question": data["question"],
                            "options": data["options"],
                            "label": data["label"],
                            "solution": str(explanation_row),
                        }
                    elif self.config.name == "math_agieval":
                        if not data.get("level"):
                            data["level"] = data['other']['level']
                        if not data.get("type"):
                            data["type"] = data['other']['type']
                        yield key, {
                            "question": data["question"],
                            "answer": data["answer"],
                            "level": data["level"],
                            "type": data["type"],
                            "solution": str(explanation_row),
                        }

                    elif self.config.name in ("sat_en", "sat_math"):
                        yield key, {
                            "passage": data["passage"],
                            "question": data["question"],
                            "options": data["options"],
                            "label": data["label"],
                            "solution": str(explanation_row),
                        }
                    elif self.config.name in ['lsat_lr', 'lsat_rc', 'lsat_ar']:
                        yield key, {
                            "passage": data["passage"],
                            "question": data["question"],
                            "options": data["options"],
                            "label": data["label"],
                            "solution": str(explanation_row),
                        }
                except:
                    pass
        else:
            with open(filepath, encoding="utf-8") as f:
                for key, row in enumerate(f):
                    data = json.loads(row)

                    if self.config.name == "aqua_rat":
                        yield key, {
                            "question": data["question"],
                            "options": data["options"],
                            "label": data["label"],
                            "solution": data["other"]["solution"],
                        }
                    elif self.config.name == "logiqa":
                        yield key, {
                            "passage": data["passage"],
                            "question": data["question"],
                            "options": data["options"],
                            "label": data["label"],
                            "solution": data["label"],
                        }
                    elif self.config.name == "math_agieval":
                        if not data.get("level"):
                            data["level"] = data['other']['level']
                        if not data.get("type"):
                            data["type"] = data['other']['type']
                        yield key, {
                            "question": data["question"],
                            "answer": data["answer"],
                            "solution": data["other"]["solution"],
                            "level": data["level"],
                            "type": data["type"],
                        }

                    elif self.config.name in ("sat_en", "sat_math"):
                        label_index = "ABCDE".index(data["label"])
                        if label_index > len(data["options"]) - 1:
                            continue
                        else:
                            yield key, {
                                "passage": data["passage"],
                                "question": data["question"],
                                "options": data["options"],
                                "label": data["label"],
                                "solution": data["other"]["solution"],
                            }
                    elif self.config.name in ['lsat_lr', 'lsat_rc', 'lsat_ar']:
                        yield key, {
                            "passage": data["passage"],
                            "question": data["question"],
                            "options": data["options"],
                            "label": data["label"],
                            "solution": data["label"],
                        }