File size: 7,650 Bytes
6f26501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ea8b02
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f26501
1ea8b02
6f26501
 
1ea8b02
6f26501
1ea8b02
6f26501
 
1ea8b02
6f26501
1ea8b02
 
 
 
 
 
6f26501
 
1ea8b02
6f26501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ea8b02
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
_DESCRIPTION = """\
The dataset is an amendment and re-annotation of LogiQA in 2020, a large-scale logical reasoning reading comprehension dataset adapted from the Chinese Civil Service Examination. We increase the data size, refine the texts with manual translation by professionals, and improve the quality by removing items with distinctive cultural features like Chinese idioms. Furthermore, we conduct a fine-grained annotation on the dataset and turn it into a two-way natural language inference (NLI) task, resulting in 35k premise-hypothesis pairs with gold labels, making it the first large-scale NLI dataset for complex logical reasoning
"""

_HOMEPAGE = "https://github.com/csitfun/LogiQA2.0/tree/main"

_LICENSE = (
    "Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License"
)
HEAD= 'https://raw.githubusercontent.com/microsoft/AGIEval/main/data/v1/'

_URLS = {
    "sat_en": {
        "test": HEAD+'sat-en.jsonl',
    },
    "sat_math": {
        "test": HEAD+'sat-math.jsonl'
    },
    "lsat_ar": {
        "test": HEAD+'lsat-ar.jsonl'
    },
    "lsat_lr": {
        "test": HEAD+'lsat-lr.jsonl'
    },
    "lsat_rc": {
        "test": HEAD+'lsat-rc.jsonl'
    },
    "logiqa": {
        "test": HEAD+'logiqa-en.jsonl'
    },
    "aqua_rat": {
        "test": HEAD+'aqua_rat.jsonl'
    },
    'math_agieval': {
        "test": HEAD+'math.jsonl'
    },
}


class LogiQA2(datasets.GeneratorBasedBuilder):
    """TODO: Short description of my dataset."""

    VERSION = datasets.Version("2.0.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(
            name="aqua_rat",
            version=VERSION,
            description="",
        ),
        datasets.BuilderConfig(
            name="sat_en",
            version=VERSION,
            description="",
        ),
        datasets.BuilderConfig(
            name="sat_math",
            version=VERSION,
            description="",
        ),
        datasets.BuilderConfig(
            name="lsat_ar",
            version=VERSION,
            description="",
        ),
        datasets.BuilderConfig(
            name="lsat_lr",
            version=VERSION,
            description="",
        ),
        datasets.BuilderConfig(
            name="lsat_rc",
            version=VERSION,
            description="",
        ),
        datasets.BuilderConfig(
            name="logiqa",
            version=VERSION,
            description="",
        ),
        datasets.BuilderConfig(
            name="math_agieval",
            version=VERSION,
            description="",
        ),
    ]
    DEFAULT_CONFIG_NAME = "aqua_rat"

    def _info(self):

        if self.config.name == "aqua_rat":
            features = datasets.Features(
                {
                    "question": datasets.Value("string"),
                    "options": datasets.features.Sequence(datasets.Value("string")),
                    "label": datasets.ClassLabel(num_classes=5, names=["A", "B", "C", "D", "E"]),
                    "solution": datasets.Value("string"),
                }
            )
        elif self.config.name == "sat_en":
            features = datasets.Features(
                {"passage": datasets.Value("string"),
                 "question": datasets.Value("string"),
                 "options": datasets.features.Sequence(datasets.Value("string")),
                 "label": datasets.ClassLabel(num_classes=4, names=["A", "B", "C", "D"]),
                 "solution": datasets.Value("string"),
                }
            )
        elif self.config.name in ["sat_math", "logiqa"]:
            # remove solution from other
            features = datasets.Features(
                {"question": datasets.Value("string"),
                 "options": datasets.features.Sequence(datasets.Value("string")),
                 "label": datasets.ClassLabel(num_classes=4, names=["A", "B", "C", "D"]),
                 "solution": datasets.Value("string"),
                 }
            )
        elif self.config.name == "math_agieval":
            features = datasets.Features(
                {"question": datasets.Value("string"),
                 "answer": datasets.features.Sequence(datasets.Value("string")),
                 "solution": datasets.Value("string"),
                 "level": datasets.Value("int32"),
                 "type": datasets.Value("string"),
                 }
            )
        elif self.config.name in ['lsat_lr', 'lsat_rc', 'lsat_ar']:
            features = datasets.Features(
                {"question": datasets.Value("string"),
                 "options": datasets.features.Sequence(datasets.Value("string")),
                 "label": datasets.ClassLabel(num_classes=5, names=["A", "B", "C", "D", "E"]),
                 }
            )


        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        _urls = _URLS[self.config.name]
        urls = {
            "test": _urls["test"],
        }
        data_dir = dl_manager.download_and_extract(urls)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": data_dir["test"], "split": "test"},
            ),
        ]

    def _generate_examples(self, filepath, split):
        with open(filepath, encoding="utf-8") as f:
            for key, row in enumerate(f):
                data = json.loads(row)

                if self.config.name in ["aqua_rat","sat_math", "logiqa"]:
                    yield key, {
                        "question": data["question"],
                        "options": data["options"],
                        "label": data["label"],
                        "solution": data["other"]["solution"],
                    }
                elif self.config.name == "math_agieval":
                    yield key, {
                        "question": data["question"],
                        "answer": data["answer"],
                        "solution": data["solution"],
                        "level": data["level"],
                        "type": data["type"]
                    }

                elif self.config.name == "sat_en":
                    yield key, {
                        "passage": data["passage"],
                        "question": data["question"],
                        "options": data["options"],
                        "label": data["label"],
                        "solution": data["other"]["solution"],
                    }
                elif self.config.name in ['lsat_lr', 'lsat_rc', 'lsat_ar']:
                    yield key, {
                        "question": data["question"],
                        "options": data["options"],
                        "label": data["label"],
                    }