"""Blender script to render images of 3D models.""" import argparse import json import math import os import random import sys from typing import Any, Callable, Dict, Generator, List, Literal, Optional, Set, Tuple import bpy import numpy as np from mathutils import Matrix, Vector IMPORT_FUNCTIONS: Dict[str, Callable] = { "obj": bpy.ops.import_scene.obj, "glb": bpy.ops.import_scene.gltf, "gltf": bpy.ops.import_scene.gltf, "usd": bpy.ops.import_scene.usd, "fbx": bpy.ops.import_scene.fbx, "stl": bpy.ops.import_mesh.stl, "usda": bpy.ops.import_scene.usda, "dae": bpy.ops.wm.collada_import, "ply": bpy.ops.import_mesh.ply, "abc": bpy.ops.wm.alembic_import, "blend": bpy.ops.wm.append, } def reset_cameras() -> None: """Resets the cameras in the scene to a single default camera.""" # Delete all existing cameras bpy.ops.object.select_all(action="DESELECT") bpy.ops.object.select_by_type(type="CAMERA") bpy.ops.object.delete() # Create a new camera with default properties bpy.ops.object.camera_add() # Rename the new camera to 'NewDefaultCamera' new_camera = bpy.context.active_object new_camera.name = "Camera" # Set the new camera as the active camera for the scene scene.camera = new_camera def sample_point_on_sphere(radius: float) -> Tuple[float, float, float]: """Samples a point on a sphere with the given radius. Args: radius (float): Radius of the sphere. Returns: Tuple[float, float, float]: A point on the sphere. """ theta = random.random() * 2 * math.pi phi = math.acos(2 * random.random() - 1) return ( radius * math.sin(phi) * math.cos(theta), radius * math.sin(phi) * math.sin(theta), radius * math.cos(phi), ) def _sample_spherical( radius_min: float = 1.5, radius_max: float = 2.0, maxz: float = 1.6, minz: float = -0.75, ) -> np.ndarray: """Sample a random point in a spherical shell. Args: radius_min (float): Minimum radius of the spherical shell. radius_max (float): Maximum radius of the spherical shell. maxz (float): Maximum z value of the spherical shell. minz (float): Minimum z value of the spherical shell. Returns: np.ndarray: A random (x, y, z) point in the spherical shell. """ correct = False vec = np.array([0, 0, 0]) while not correct: vec = np.random.uniform(-1, 1, 3) # vec[2] = np.abs(vec[2]) radius = np.random.uniform(radius_min, radius_max, 1) vec = vec / np.linalg.norm(vec, axis=0) * radius[0] if maxz > vec[2] > minz: correct = True return vec def randomize_camera( radius_min: float = 1.5, radius_max: float = 2.2, maxz: float = 2.2, minz: float = -2.2, only_northern_hemisphere: bool = False, ) -> bpy.types.Object: """Randomizes the camera location and rotation inside of a spherical shell. Args: radius_min (float, optional): Minimum radius of the spherical shell. Defaults to 1.5. radius_max (float, optional): Maximum radius of the spherical shell. Defaults to 2.0. maxz (float, optional): Maximum z value of the spherical shell. Defaults to 1.6. minz (float, optional): Minimum z value of the spherical shell. Defaults to -0.75. only_northern_hemisphere (bool, optional): Whether to only sample points in the northern hemisphere. Defaults to False. Returns: bpy.types.Object: The camera object. """ x, y, z = _sample_spherical( radius_min=radius_min, radius_max=radius_max, maxz=maxz, minz=minz ) camera = bpy.data.objects["Camera"] # only positive z if only_northern_hemisphere: z = abs(z) camera.location = Vector(np.array([x, y, z])) direction = -camera.location rot_quat = direction.to_track_quat("-Z", "Y") camera.rotation_euler = rot_quat.to_euler() return camera def _set_camera_at_size(i: int, scale: float = 1.5) -> bpy.types.Object: """Debugging function to set the camera on the 6 faces of a cube. Args: i (int): Index of the face of the cube. scale (float, optional): Scale of the cube. Defaults to 1.5. Returns: bpy.types.Object: The camera object. """ if i == 0: x, y, z = scale, 0, 0 elif i == 1: x, y, z = -scale, 0, 0 elif i == 2: x, y, z = 0, scale, 0 elif i == 3: x, y, z = 0, -scale, 0 elif i == 4: x, y, z = 0, 0, scale elif i == 5: x, y, z = 0, 0, -scale else: raise ValueError(f"Invalid index: i={i}, must be int in range [0, 5].") camera = bpy.data.objects["Camera"] camera.location = Vector(np.array([x, y, z])) direction = -camera.location rot_quat = direction.to_track_quat("-Z", "Y") camera.rotation_euler = rot_quat.to_euler() return camera def _create_light( name: str, light_type: Literal["POINT", "SUN", "SPOT", "AREA"], location: Tuple[float, float, float], rotation: Tuple[float, float, float], energy: float, use_shadow: bool = False, specular_factor: float = 1.0, ): """Creates a light object. Args: name (str): Name of the light object. light_type (Literal["POINT", "SUN", "SPOT", "AREA"]): Type of the light. location (Tuple[float, float, float]): Location of the light. rotation (Tuple[float, float, float]): Rotation of the light. energy (float): Energy of the light. use_shadow (bool, optional): Whether to use shadows. Defaults to False. specular_factor (float, optional): Specular factor of the light. Defaults to 1.0. Returns: bpy.types.Object: The light object. """ light_data = bpy.data.lights.new(name=name, type=light_type) light_object = bpy.data.objects.new(name, light_data) bpy.context.collection.objects.link(light_object) light_object.location = location light_object.rotation_euler = rotation light_data.use_shadow = use_shadow light_data.specular_factor = specular_factor light_data.energy = energy return light_object def randomize_lighting() -> Dict[str, bpy.types.Object]: """Randomizes the lighting in the scene. Returns: Dict[str, bpy.types.Object]: Dictionary of the lights in the scene. The keys are "key_light", "fill_light", "rim_light", and "bottom_light". """ # Clear existing lights bpy.ops.object.select_all(action="DESELECT") bpy.ops.object.select_by_type(type="LIGHT") bpy.ops.object.delete() # Create key light key_light = _create_light( name="Key_Light", light_type="SUN", location=(0, 0, 0), rotation=(0.785398, 0, -0.785398), energy=random.choice([3, 4, 5]), ) # Create fill light fill_light = _create_light( name="Fill_Light", light_type="SUN", location=(0, 0, 0), rotation=(0.785398, 0, 2.35619), energy=random.choice([2, 3, 4]), ) # Create rim light rim_light = _create_light( name="Rim_Light", light_type="SUN", location=(0, 0, 0), rotation=(-0.785398, 0, -3.92699), energy=random.choice([3, 4, 5]), ) # Create bottom light bottom_light = _create_light( name="Bottom_Light", light_type="SUN", location=(0, 0, 0), rotation=(3.14159, 0, 0), energy=random.choice([1, 2, 3]), ) return dict( key_light=key_light, fill_light=fill_light, rim_light=rim_light, bottom_light=bottom_light, ) def reset_scene() -> None: """Resets the scene to a clean state. Returns: None """ # delete everything that isn't part of a camera or a light for obj in bpy.data.objects: if obj.type not in {"CAMERA", "LIGHT"}: bpy.data.objects.remove(obj, do_unlink=True) # delete all the materials for material in bpy.data.materials: bpy.data.materials.remove(material, do_unlink=True) # delete all the textures for texture in bpy.data.textures: bpy.data.textures.remove(texture, do_unlink=True) # delete all the images for image in bpy.data.images: bpy.data.images.remove(image, do_unlink=True) def load_object(object_path: str) -> None: """Loads a model with a supported file extension into the scene. Args: object_path (str): Path to the model file. Raises: ValueError: If the file extension is not supported. Returns: None """ file_extension = object_path.split(".")[-1].lower() if file_extension is None: raise ValueError(f"Unsupported file type: {object_path}") if file_extension == "usdz": # install usdz io package dirname = os.path.dirname(os.path.realpath(__file__)) usdz_package = os.path.join(dirname, "io_scene_usdz.zip") bpy.ops.preferences.addon_install(filepath=usdz_package) # enable it addon_name = "io_scene_usdz" bpy.ops.preferences.addon_enable(module=addon_name) # import the usdz from io_scene_usdz.import_usdz import import_usdz import_usdz(context, filepath=object_path, materials=True, animations=True) return None # load from existing import functions import_function = IMPORT_FUNCTIONS[file_extension] if file_extension == "blend": import_function(directory=object_path, link=False) elif file_extension in {"glb", "gltf"}: import_function(filepath=object_path, merge_vertices=True) else: import_function(filepath=object_path) def scene_bbox( single_obj: Optional[bpy.types.Object] = None, ignore_matrix: bool = False ) -> Tuple[Vector, Vector]: """Returns the bounding box of the scene. Taken from Shap-E rendering script (https://github.com/openai/shap-e/blob/main/shap_e/rendering/blender/blender_script.py#L68-L82) Args: single_obj (Optional[bpy.types.Object], optional): If not None, only computes the bounding box for the given object. Defaults to None. ignore_matrix (bool, optional): Whether to ignore the object's matrix. Defaults to False. Raises: RuntimeError: If there are no objects in the scene. Returns: Tuple[Vector, Vector]: The minimum and maximum coordinates of the bounding box. """ bbox_min = (math.inf,) * 3 bbox_max = (-math.inf,) * 3 found = False for obj in get_scene_meshes() if single_obj is None else [single_obj]: found = True for coord in obj.bound_box: coord = Vector(coord) if not ignore_matrix: coord = obj.matrix_world @ coord bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord)) bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord)) if not found: raise RuntimeError("no objects in scene to compute bounding box for") return Vector(bbox_min), Vector(bbox_max) def get_scene_root_objects() -> Generator[bpy.types.Object, None, None]: """Returns all root objects in the scene. Yields: Generator[bpy.types.Object, None, None]: Generator of all root objects in the scene. """ for obj in bpy.context.scene.objects.values(): if not obj.parent: yield obj def get_scene_meshes() -> Generator[bpy.types.Object, None, None]: """Returns all meshes in the scene. Yields: Generator[bpy.types.Object, None, None]: Generator of all meshes in the scene. """ for obj in bpy.context.scene.objects.values(): if isinstance(obj.data, (bpy.types.Mesh)): yield obj def get_3x4_RT_matrix_from_blender(cam: bpy.types.Object) -> Matrix: """Returns the 3x4 RT matrix from the given camera. Taken from Zero123, which in turn was taken from https://github.com/panmari/stanford-shapenet-renderer/blob/master/render_blender.py Args: cam (bpy.types.Object): The camera object. Returns: Matrix: The 3x4 RT matrix from the given camera. """ # Use matrix_world instead to account for all constraints location, rotation = cam.matrix_world.decompose()[0:2] R_world2bcam = rotation.to_matrix().transposed() # Use location from matrix_world to account for constraints: T_world2bcam = -1 * R_world2bcam @ location # put into 3x4 matrix RT = Matrix( ( R_world2bcam[0][:] + (T_world2bcam[0],), R_world2bcam[1][:] + (T_world2bcam[1],), R_world2bcam[2][:] + (T_world2bcam[2],), ) ) return RT def delete_invisible_objects() -> None: """Deletes all invisible objects in the scene. Returns: None """ bpy.ops.object.select_all(action="DESELECT") for obj in scene.objects: if obj.hide_viewport or obj.hide_render: obj.hide_viewport = False obj.hide_render = False obj.hide_select = False obj.select_set(True) bpy.ops.object.delete() # Delete invisible collections invisible_collections = [col for col in bpy.data.collections if col.hide_viewport] for col in invisible_collections: bpy.data.collections.remove(col) def normalize_scene() -> None: """Normalizes the scene by scaling and translating it to fit in a unit cube centered at the origin. Mostly taken from the Point-E / Shap-E rendering script (https://github.com/openai/point-e/blob/main/point_e/evals/scripts/blender_script.py#L97-L112), but fix for multiple root objects: (see bug report here: https://github.com/openai/shap-e/pull/60). Returns: None """ if len(list(get_scene_root_objects())) > 1: # create an empty object to be used as a parent for all root objects parent_empty = bpy.data.objects.new("ParentEmpty", None) bpy.context.scene.collection.objects.link(parent_empty) # parent all root objects to the empty object for obj in get_scene_root_objects(): if obj != parent_empty: obj.parent = parent_empty bbox_min, bbox_max = scene_bbox() scale = 1 / max(bbox_max - bbox_min) for obj in get_scene_root_objects(): obj.scale = obj.scale * scale # Apply scale to matrix_world. bpy.context.view_layer.update() bbox_min, bbox_max = scene_bbox() offset = -(bbox_min + bbox_max) / 2 for obj in get_scene_root_objects(): obj.matrix_world.translation += offset bpy.ops.object.select_all(action="DESELECT") # unparent the camera bpy.data.objects["Camera"].parent = None def delete_missing_textures() -> Dict[str, Any]: """Deletes all missing textures in the scene. Returns: Dict[str, Any]: Dictionary with keys "count", "files", and "file_path_to_color". "count" is the number of missing textures, "files" is a list of the missing texture file paths, and "file_path_to_color" is a dictionary mapping the missing texture file paths to a random color. """ missing_file_count = 0 out_files = [] file_path_to_color = {} # Check all materials in the scene for material in bpy.data.materials: if material.use_nodes: for node in material.node_tree.nodes: if node.type == "TEX_IMAGE": image = node.image if image is not None: file_path = bpy.path.abspath(image.filepath) if file_path == "": # means it's embedded continue if not os.path.exists(file_path): # Find the connected Principled BSDF node connected_node = node.outputs[0].links[0].to_node if connected_node.type == "BSDF_PRINCIPLED": if file_path not in file_path_to_color: # Set a random color for the unique missing file path random_color = [random.random() for _ in range(3)] file_path_to_color[file_path] = random_color + [1] connected_node.inputs[ "Base Color" ].default_value = file_path_to_color[file_path] # Delete the TEX_IMAGE node material.node_tree.nodes.remove(node) missing_file_count += 1 out_files.append(image.filepath) return { "count": missing_file_count, "files": out_files, "file_path_to_color": file_path_to_color, } def _get_random_color() -> Tuple[float, float, float, float]: """Generates a random RGB-A color. The alpha value is always 1. Returns: Tuple[float, float, float, float]: A random RGB-A color. Each value is in the range [0, 1]. """ return (random.random(), random.random(), random.random(), 1) def _apply_color_to_object( obj: bpy.types.Object, color: Tuple[float, float, float, float] ) -> None: """Applies the given color to the object. Args: obj (bpy.types.Object): The object to apply the color to. color (Tuple[float, float, float, float]): The color to apply to the object. Returns: None """ mat = bpy.data.materials.new(name=f"RandomMaterial_{obj.name}") mat.use_nodes = True nodes = mat.node_tree.nodes principled_bsdf = nodes.get("Principled BSDF") if principled_bsdf: principled_bsdf.inputs["Base Color"].default_value = color obj.data.materials.append(mat) def apply_single_random_color_to_all_objects() -> Tuple[float, float, float, float]: """Applies a single random color to all objects in the scene. Returns: Tuple[float, float, float, float]: The random color that was applied to all objects. """ rand_color = _get_random_color() for obj in bpy.context.scene.objects: if obj.type == "MESH": _apply_color_to_object(obj, rand_color) return rand_color class MetadataExtractor: """Class to extract metadata from a Blender scene.""" def __init__( self, object_path: str, scene: bpy.types.Scene, bdata: bpy.types.BlendData ) -> None: """Initializes the MetadataExtractor. Args: object_path (str): Path to the object file. scene (bpy.types.Scene): The current scene object from `bpy.context.scene`. bdata (bpy.types.BlendData): The current blender data from `bpy.data`. Returns: None """ self.object_path = object_path self.scene = scene self.bdata = bdata def get_poly_count(self) -> int: """Returns the total number of polygons in the scene.""" total_poly_count = 0 for obj in self.scene.objects: if obj.type == "MESH": total_poly_count += len(obj.data.polygons) return total_poly_count def get_vertex_count(self) -> int: """Returns the total number of vertices in the scene.""" total_vertex_count = 0 for obj in self.scene.objects: if obj.type == "MESH": total_vertex_count += len(obj.data.vertices) return total_vertex_count def get_edge_count(self) -> int: """Returns the total number of edges in the scene.""" total_edge_count = 0 for obj in self.scene.objects: if obj.type == "MESH": total_edge_count += len(obj.data.edges) return total_edge_count def get_lamp_count(self) -> int: """Returns the number of lamps in the scene.""" return sum(1 for obj in self.scene.objects if obj.type == "LIGHT") def get_mesh_count(self) -> int: """Returns the number of meshes in the scene.""" return sum(1 for obj in self.scene.objects if obj.type == "MESH") def get_material_count(self) -> int: """Returns the number of materials in the scene.""" return len(self.bdata.materials) def get_object_count(self) -> int: """Returns the number of objects in the scene.""" return len(self.bdata.objects) def get_animation_count(self) -> int: """Returns the number of animations in the scene.""" return len(self.bdata.actions) def get_linked_files(self) -> List[str]: """Returns the filepaths of all linked files.""" image_filepaths = self._get_image_filepaths() material_filepaths = self._get_material_filepaths() linked_libraries_filepaths = self._get_linked_libraries_filepaths() all_filepaths = ( image_filepaths | material_filepaths | linked_libraries_filepaths ) if "" in all_filepaths: all_filepaths.remove("") return list(all_filepaths) def _get_image_filepaths(self) -> Set[str]: """Returns the filepaths of all images used in the scene.""" filepaths = set() for image in self.bdata.images: if image.source == "FILE": filepaths.add(bpy.path.abspath(image.filepath)) return filepaths def _get_material_filepaths(self) -> Set[str]: """Returns the filepaths of all images used in materials.""" filepaths = set() for material in self.bdata.materials: if material.use_nodes: for node in material.node_tree.nodes: if node.type == "TEX_IMAGE": image = node.image if image is not None: filepaths.add(bpy.path.abspath(image.filepath)) return filepaths def _get_linked_libraries_filepaths(self) -> Set[str]: """Returns the filepaths of all linked libraries.""" filepaths = set() for library in self.bdata.libraries: filepaths.add(bpy.path.abspath(library.filepath)) return filepaths def get_scene_size(self) -> Dict[str, list]: """Returns the size of the scene bounds in meters.""" bbox_min, bbox_max = scene_bbox() return {"bbox_max": list(bbox_max), "bbox_min": list(bbox_min)} def get_shape_key_count(self) -> int: """Returns the number of shape keys in the scene.""" total_shape_key_count = 0 for obj in self.scene.objects: if obj.type == "MESH": shape_keys = obj.data.shape_keys if shape_keys is not None: total_shape_key_count += ( len(shape_keys.key_blocks) - 1 ) # Subtract 1 to exclude the Basis shape key return total_shape_key_count def get_armature_count(self) -> int: """Returns the number of armatures in the scene.""" total_armature_count = 0 for obj in self.scene.objects: if obj.type == "ARMATURE": total_armature_count += 1 return total_armature_count def read_file_size(self) -> int: """Returns the size of the file in bytes.""" return os.path.getsize(self.object_path) def get_metadata(self) -> Dict[str, Any]: """Returns the metadata of the scene. Returns: Dict[str, Any]: Dictionary of the metadata with keys for "file_size", "poly_count", "vert_count", "edge_count", "material_count", "object_count", "lamp_count", "mesh_count", "animation_count", "linked_files", "scene_size", "shape_key_count", and "armature_count". """ return { "file_size": self.read_file_size(), "poly_count": self.get_poly_count(), "vert_count": self.get_vertex_count(), "edge_count": self.get_edge_count(), "material_count": self.get_material_count(), "object_count": self.get_object_count(), "lamp_count": self.get_lamp_count(), "mesh_count": self.get_mesh_count(), "animation_count": self.get_animation_count(), "linked_files": self.get_linked_files(), "scene_size": self.get_scene_size(), "shape_key_count": self.get_shape_key_count(), "armature_count": self.get_armature_count(), } def render_object( object_file: str, num_renders: int, only_northern_hemisphere: bool, output_dir: str, ) -> None: """Saves rendered images with its camera matrix and metadata of the object. Args: object_file (str): Path to the object file. num_renders (int): Number of renders to save of the object. only_northern_hemisphere (bool): Whether to only render sides of the object that are in the northern hemisphere. This is useful for rendering objects that are photogrammetrically scanned, as the bottom of the object often has holes. output_dir (str): Path to the directory where the rendered images and metadata will be saved. Returns: None """ os.makedirs(output_dir, exist_ok=True) # load the object if object_file.endswith(".blend"): bpy.ops.object.mode_set(mode="OBJECT") reset_cameras() delete_invisible_objects() else: reset_scene() load_object(object_file) # Set up cameras cam = scene.objects["Camera"] cam.data.lens = 35 cam.data.sensor_width = 32 # Set up camera constraints cam_constraint = cam.constraints.new(type="TRACK_TO") cam_constraint.track_axis = "TRACK_NEGATIVE_Z" cam_constraint.up_axis = "UP_Y" empty = bpy.data.objects.new("Empty", None) scene.collection.objects.link(empty) cam_constraint.target = empty # Extract the metadata. This must be done before normalizing the scene to get # accurate bounding box information. metadata_extractor = MetadataExtractor( object_path=object_file, scene=scene, bdata=bpy.data ) metadata = metadata_extractor.get_metadata() # delete all objects that are not meshes if object_file.lower().endswith(".usdz"): # don't delete missing textures on usdz files, lots of them are embedded missing_textures = None else: missing_textures = delete_missing_textures() metadata["missing_textures"] = missing_textures # possibly apply a random color to all objects if object_file.endswith(".stl") or object_file.endswith(".ply"): assert len(bpy.context.selected_objects) == 1 rand_color = apply_single_random_color_to_all_objects() metadata["random_color"] = rand_color else: metadata["random_color"] = None # save metadata metadata_path = os.path.join(output_dir, "metadata.json") os.makedirs(os.path.dirname(metadata_path), exist_ok=True) with open(metadata_path, "w", encoding="utf-8") as f: json.dump(metadata, f, sort_keys=True, indent=2) # normalize the scene normalize_scene() # randomize the lighting randomize_lighting() # render the images for i in range(num_renders): # set camera camera = randomize_camera( only_northern_hemisphere=only_northern_hemisphere, ) # render the image render_path = os.path.join(output_dir, f"{i:03d}.png") scene.render.filepath = render_path bpy.ops.render.render(write_still=True) # save camera RT matrix rt_matrix = get_3x4_RT_matrix_from_blender(camera) rt_matrix_path = os.path.join(output_dir, f"{i:03d}.npy") np.save(rt_matrix_path, rt_matrix) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--object_path", type=str, required=True, help="Path to the object file", ) parser.add_argument( "--output_dir", type=str, required=True, help="Path to the directory where the rendered images and metadata will be saved.", ) parser.add_argument( "--engine", type=str, default="BLENDER_EEVEE", choices=["CYCLES", "BLENDER_EEVEE"], ) parser.add_argument( "--only_northern_hemisphere", action="store_true", help="Only render the northern hemisphere of the object.", default=False, ) parser.add_argument( "--num_renders", type=int, default=12, help="Number of renders to save of the object.", ) argv = sys.argv[sys.argv.index("--") + 1 :] args = parser.parse_args(argv) context = bpy.context scene = context.scene render = scene.render # Set render settings render.engine = args.engine render.image_settings.file_format = "PNG" render.image_settings.color_mode = "RGBA" render.resolution_x = 512 render.resolution_y = 512 render.resolution_percentage = 100 # Set cycles settings scene.cycles.device = "GPU" scene.cycles.samples = 128 scene.cycles.diffuse_bounces = 1 scene.cycles.glossy_bounces = 1 scene.cycles.transparent_max_bounces = 3 scene.cycles.transmission_bounces = 3 scene.cycles.filter_width = 0.01 scene.cycles.use_denoising = True scene.render.film_transparent = True bpy.context.preferences.addons["cycles"].preferences.get_devices() bpy.context.preferences.addons[ "cycles" ].preferences.compute_device_type = "CUDA" # or "OPENCL" # Render the images render_object( object_file=args.object_path, num_renders=args.num_renders, only_northern_hemisphere=args.only_northern_hemisphere, output_dir=args.output_dir, )