Datasets:

Languages:
English
ArXiv:
License:
objaverse-xl / objaverse_xl /smithsonian.py
mattdeitke's picture
small smithsonian api updates
312c3d3
raw
history blame
6 kB
"""Script to download 3D objects from the Smithsonian Institution."""
import multiprocessing
import os
from functools import partial
from multiprocessing import Pool
from typing import Dict, List, Optional, Tuple
import fsspec
import pandas as pd
import requests
from loguru import logger
from tqdm import tqdm
from objaverse_xl.utils import get_uid_from_str
def load_smithsonian_metadata(download_dir: str = "~/.objaverse") -> pd.DataFrame:
"""Loads the Smithsonian Object Metadata dataset as a Pandas DataFrame.
Args:
download_dir (str, optional): Directory to download the parquet metadata file.
Supports all file systems supported by fsspec. Defaults to "~/.objaverse".
Returns:
pd.DataFrame: Smithsonian Object Metadata dataset as a Pandas DataFrame with
columns for the object "title", "url", "quality", "file_type", "uid", and
"license". The quality is always Medium and the file_type is always glb.
"""
filename = os.path.join(download_dir, "smithsonian", "object-metadata.parquet")
fs, path = fsspec.core.url_to_fs(filename)
fs.makedirs(os.path.dirname(path), exist_ok=True)
# download the parquet file if it doesn't exist
if not fs.exists(path):
url = "https://huggingface.co/datasets/allenai/objaverse-xl/resolve/main/smithsonian/object-metadata.parquet"
response = requests.get(url)
response.raise_for_status()
with fs.open(path, "wb") as file:
file.write(response.content)
# load the parquet file with fsspec
with fs.open(path) as f:
df = pd.read_parquet(f)
return df
def _download_smithsonian_object(
url: str, download_dir: str = "~/.objaverse"
) -> Tuple[str, Optional[str]]:
"""Downloads a Smithsonian Object from a URL.
Overwrites the file if it already exists and assumes this was previous checked.
Args:
url (str): URL to download the Smithsonian Object from.
download_dir (str, optional): Directory to download the Smithsonian Object to.
Supports all file systems supported by fsspec. Defaults to "~/.objaverse".
Returns:
Tuple[str, Optional[str]]: Tuple of the URL and the path to the downloaded
Smithsonian Object. If the Smithsonian Object was not downloaded, the path
will be None.
"""
uid = get_uid_from_str(url)
filename = os.path.join(download_dir, "smithsonian", "objects", f"{uid}.glb")
fs, path = fsspec.core.url_to_fs(filename)
response = requests.get(url)
# check if the path is valid
if response.status_code == 404:
logger.warning(f"404 for {url}")
return url, None
# write to tmp path so that we don't have a partial file
tmp_path = f"{path}.tmp"
with fs.open(tmp_path, "wb") as file:
for chunk in response.iter_content(chunk_size=8192):
file.write(chunk)
# rename to final path
fs.rename(tmp_path, path)
return url, filename
def download_smithsonian_objects(
urls: Optional[List[str]] = None,
processes: Optional[int] = None,
download_dir: str = "~/.objaverse",
) -> List[Dict[str, str]]:
"""Downloads all Smithsonian Objects.
Args:
urls (Optional[List[str]], optional): List of URLs to download the Smithsonian
Objects from. If None, all Smithsonian Objects will be downloaded. Defaults
to None.
processes (Optional[int], optional): Number of processes to use for downloading
the Smithsonian Objects. If None, the number of processes will be set to the
number of CPUs on the machine (multiprocessing.cpu_count()). Defaults to
None.
download_dir (str, optional): Directory to download the Smithsonian Objects to.
Supports all file systems supported by fsspec. Defaults to "~/.objaverse".
Returns:
List[Dict[str, str]]: List of dictionaries with keys "download_path" and "url"
for each downloaded object.
"""
if processes is None:
processes = multiprocessing.cpu_count()
if urls is None:
df = load_smithsonian_metadata(download_dir=download_dir)
urls = df["url"].tolist()
# filename = os.path.join(download_dir, "smithsonian", "objects", f"{uid}.glb")
objects_dir = os.path.join(download_dir, "smithsonian", "objects")
fs, path = fsspec.core.url_to_fs(objects_dir)
fs.makedirs(path, exist_ok=True)
# get the existing glb files
existing_glb_files = fs.glob(os.path.join(objects_dir, "*.glb"), refresh=True)
existing_uids = [
os.path.basename(file).split(".")[0] for file in existing_glb_files
]
# find the urls that need to be downloaded
out = []
urls_to_download = set([])
already_downloaded_urls = set([])
for url in urls:
uid = get_uid_from_str(url)
if uid not in existing_uids:
urls_to_download.add(url)
else:
already_downloaded_urls.add(url)
out.append(
{"download_path": os.path.join(objects_dir, f"{uid}.glb"), "url": url}
)
logger.info(
f"Found {len(already_downloaded_urls)} Smithsonian Objects already downloaded"
)
logger.info(
f"Downloading {len(urls_to_download)} Smithsonian Objects with {processes=}"
)
if len(urls_to_download) == 0:
return out
with Pool(processes=processes) as pool:
results = list(
tqdm(
pool.imap_unordered(
partial(_download_smithsonian_object, download_dir=download_dir),
urls_to_download,
),
total=len(urls_to_download),
desc="Downloading Smithsonian Objects",
)
)
out.extend(
[
{"download_path": download_path, "url": url}
for url, download_path in results
if download_path is not None
]
)
return out