File size: 30,075 Bytes
203a301 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 |
"""Blender script to render images of 3D models."""
import argparse
import json
import math
import os
import random
import sys
from typing import Any, Callable, Dict, Generator, List, Literal, Optional, Set, Tuple
import bpy
import numpy as np
from mathutils import Matrix, Vector
IMPORT_FUNCTIONS: Dict[str, Callable] = {
"obj": bpy.ops.import_scene.obj,
"glb": bpy.ops.import_scene.gltf,
"gltf": bpy.ops.import_scene.gltf,
"usd": bpy.ops.import_scene.usd,
"fbx": bpy.ops.import_scene.fbx,
"stl": bpy.ops.import_mesh.stl,
"usda": bpy.ops.import_scene.usda,
"dae": bpy.ops.wm.collada_import,
"ply": bpy.ops.import_mesh.ply,
"abc": bpy.ops.wm.alembic_import,
"blend": bpy.ops.wm.append,
}
def reset_cameras() -> None:
"""Resets the cameras in the scene to a single default camera."""
# Delete all existing cameras
bpy.ops.object.select_all(action="DESELECT")
bpy.ops.object.select_by_type(type="CAMERA")
bpy.ops.object.delete()
# Create a new camera with default properties
bpy.ops.object.camera_add()
# Rename the new camera to 'NewDefaultCamera'
new_camera = bpy.context.active_object
new_camera.name = "Camera"
# Set the new camera as the active camera for the scene
scene.camera = new_camera
def sample_point_on_sphere(radius: float) -> Tuple[float, float, float]:
"""Samples a point on a sphere with the given radius.
Args:
radius (float): Radius of the sphere.
Returns:
Tuple[float, float, float]: A point on the sphere.
"""
theta = random.random() * 2 * math.pi
phi = math.acos(2 * random.random() - 1)
return (
radius * math.sin(phi) * math.cos(theta),
radius * math.sin(phi) * math.sin(theta),
radius * math.cos(phi),
)
def _sample_spherical(
radius_min: float = 1.5,
radius_max: float = 2.0,
maxz: float = 1.6,
minz: float = -0.75,
) -> np.ndarray:
"""Sample a random point in a spherical shell.
Args:
radius_min (float): Minimum radius of the spherical shell.
radius_max (float): Maximum radius of the spherical shell.
maxz (float): Maximum z value of the spherical shell.
minz (float): Minimum z value of the spherical shell.
Returns:
np.ndarray: A random (x, y, z) point in the spherical shell.
"""
correct = False
vec = np.array([0, 0, 0])
while not correct:
vec = np.random.uniform(-1, 1, 3)
# vec[2] = np.abs(vec[2])
radius = np.random.uniform(radius_min, radius_max, 1)
vec = vec / np.linalg.norm(vec, axis=0) * radius[0]
if maxz > vec[2] > minz:
correct = True
return vec
def randomize_camera(
radius_min: float = 1.5,
radius_max: float = 2.2,
maxz: float = 2.2,
minz: float = -2.2,
only_northern_hemisphere: bool = False,
) -> bpy.types.Object:
"""Randomizes the camera location and rotation inside of a spherical shell.
Args:
radius_min (float, optional): Minimum radius of the spherical shell. Defaults to
1.5.
radius_max (float, optional): Maximum radius of the spherical shell. Defaults to
2.0.
maxz (float, optional): Maximum z value of the spherical shell. Defaults to 1.6.
minz (float, optional): Minimum z value of the spherical shell. Defaults to
-0.75.
only_northern_hemisphere (bool, optional): Whether to only sample points in the
northern hemisphere. Defaults to False.
Returns:
bpy.types.Object: The camera object.
"""
x, y, z = _sample_spherical(
radius_min=radius_min, radius_max=radius_max, maxz=maxz, minz=minz
)
camera = bpy.data.objects["Camera"]
# only positive z
if only_northern_hemisphere:
z = abs(z)
camera.location = Vector(np.array([x, y, z]))
direction = -camera.location
rot_quat = direction.to_track_quat("-Z", "Y")
camera.rotation_euler = rot_quat.to_euler()
return camera
def _set_camera_at_size(i: int, scale: float = 1.5) -> bpy.types.Object:
"""Debugging function to set the camera on the 6 faces of a cube.
Args:
i (int): Index of the face of the cube.
scale (float, optional): Scale of the cube. Defaults to 1.5.
Returns:
bpy.types.Object: The camera object.
"""
if i == 0:
x, y, z = scale, 0, 0
elif i == 1:
x, y, z = -scale, 0, 0
elif i == 2:
x, y, z = 0, scale, 0
elif i == 3:
x, y, z = 0, -scale, 0
elif i == 4:
x, y, z = 0, 0, scale
elif i == 5:
x, y, z = 0, 0, -scale
else:
raise ValueError(f"Invalid index: i={i}, must be int in range [0, 5].")
camera = bpy.data.objects["Camera"]
camera.location = Vector(np.array([x, y, z]))
direction = -camera.location
rot_quat = direction.to_track_quat("-Z", "Y")
camera.rotation_euler = rot_quat.to_euler()
return camera
def _create_light(
name: str,
light_type: Literal["POINT", "SUN", "SPOT", "AREA"],
location: Tuple[float, float, float],
rotation: Tuple[float, float, float],
energy: float,
use_shadow: bool = False,
specular_factor: float = 1.0,
):
"""Creates a light object.
Args:
name (str): Name of the light object.
light_type (Literal["POINT", "SUN", "SPOT", "AREA"]): Type of the light.
location (Tuple[float, float, float]): Location of the light.
rotation (Tuple[float, float, float]): Rotation of the light.
energy (float): Energy of the light.
use_shadow (bool, optional): Whether to use shadows. Defaults to False.
specular_factor (float, optional): Specular factor of the light. Defaults to 1.0.
Returns:
bpy.types.Object: The light object.
"""
light_data = bpy.data.lights.new(name=name, type=light_type)
light_object = bpy.data.objects.new(name, light_data)
bpy.context.collection.objects.link(light_object)
light_object.location = location
light_object.rotation_euler = rotation
light_data.use_shadow = use_shadow
light_data.specular_factor = specular_factor
light_data.energy = energy
return light_object
def randomize_lighting() -> Dict[str, bpy.types.Object]:
"""Randomizes the lighting in the scene.
Returns:
Dict[str, bpy.types.Object]: Dictionary of the lights in the scene. The keys are
"key_light", "fill_light", "rim_light", and "bottom_light".
"""
# Clear existing lights
bpy.ops.object.select_all(action="DESELECT")
bpy.ops.object.select_by_type(type="LIGHT")
bpy.ops.object.delete()
# Create key light
key_light = _create_light(
name="Key_Light",
light_type="SUN",
location=(0, 0, 0),
rotation=(0.785398, 0, -0.785398),
energy=random.choice([3, 4, 5]),
)
# Create fill light
fill_light = _create_light(
name="Fill_Light",
light_type="SUN",
location=(0, 0, 0),
rotation=(0.785398, 0, 2.35619),
energy=random.choice([2, 3, 4]),
)
# Create rim light
rim_light = _create_light(
name="Rim_Light",
light_type="SUN",
location=(0, 0, 0),
rotation=(-0.785398, 0, -3.92699),
energy=random.choice([3, 4, 5]),
)
# Create bottom light
bottom_light = _create_light(
name="Bottom_Light",
light_type="SUN",
location=(0, 0, 0),
rotation=(3.14159, 0, 0),
energy=random.choice([1, 2, 3]),
)
return dict(
key_light=key_light,
fill_light=fill_light,
rim_light=rim_light,
bottom_light=bottom_light,
)
def reset_scene() -> None:
"""Resets the scene to a clean state.
Returns:
None
"""
# delete everything that isn't part of a camera or a light
for obj in bpy.data.objects:
if obj.type not in {"CAMERA", "LIGHT"}:
bpy.data.objects.remove(obj, do_unlink=True)
# delete all the materials
for material in bpy.data.materials:
bpy.data.materials.remove(material, do_unlink=True)
# delete all the textures
for texture in bpy.data.textures:
bpy.data.textures.remove(texture, do_unlink=True)
# delete all the images
for image in bpy.data.images:
bpy.data.images.remove(image, do_unlink=True)
def load_object(object_path: str) -> None:
"""Loads a model with a supported file extension into the scene.
Args:
object_path (str): Path to the model file.
Raises:
ValueError: If the file extension is not supported.
Returns:
None
"""
file_extension = object_path.split(".")[-1].lower()
if file_extension is None:
raise ValueError(f"Unsupported file type: {object_path}")
if file_extension == "usdz":
# install usdz io package
dirname = os.path.dirname(os.path.realpath(__file__))
usdz_package = os.path.join(dirname, "io_scene_usdz.zip")
bpy.ops.preferences.addon_install(filepath=usdz_package)
# enable it
addon_name = "io_scene_usdz"
bpy.ops.preferences.addon_enable(module=addon_name)
# import the usdz
from io_scene_usdz.import_usdz import import_usdz
import_usdz(context, filepath=object_path, materials=True, animations=True)
return None
# load from existing import functions
import_function = IMPORT_FUNCTIONS[file_extension]
if file_extension == "blend":
import_function(directory=object_path, link=False)
elif file_extension in {"glb", "gltf"}:
import_function(filepath=object_path, merge_vertices=True)
else:
import_function(filepath=object_path)
def scene_bbox(
single_obj: Optional[bpy.types.Object] = None, ignore_matrix: bool = False
) -> Tuple[Vector, Vector]:
"""Returns the bounding box of the scene.
Taken from Shap-E rendering script
(https://github.com/openai/shap-e/blob/main/shap_e/rendering/blender/blender_script.py#L68-L82)
Args:
single_obj (Optional[bpy.types.Object], optional): If not None, only computes
the bounding box for the given object. Defaults to None.
ignore_matrix (bool, optional): Whether to ignore the object's matrix. Defaults
to False.
Raises:
RuntimeError: If there are no objects in the scene.
Returns:
Tuple[Vector, Vector]: The minimum and maximum coordinates of the bounding box.
"""
bbox_min = (math.inf,) * 3
bbox_max = (-math.inf,) * 3
found = False
for obj in get_scene_meshes() if single_obj is None else [single_obj]:
found = True
for coord in obj.bound_box:
coord = Vector(coord)
if not ignore_matrix:
coord = obj.matrix_world @ coord
bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord))
bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord))
if not found:
raise RuntimeError("no objects in scene to compute bounding box for")
return Vector(bbox_min), Vector(bbox_max)
def get_scene_root_objects() -> Generator[bpy.types.Object, None, None]:
"""Returns all root objects in the scene.
Yields:
Generator[bpy.types.Object, None, None]: Generator of all root objects in the
scene.
"""
for obj in bpy.context.scene.objects.values():
if not obj.parent:
yield obj
def get_scene_meshes() -> Generator[bpy.types.Object, None, None]:
"""Returns all meshes in the scene.
Yields:
Generator[bpy.types.Object, None, None]: Generator of all meshes in the scene.
"""
for obj in bpy.context.scene.objects.values():
if isinstance(obj.data, (bpy.types.Mesh)):
yield obj
def get_3x4_RT_matrix_from_blender(cam: bpy.types.Object) -> Matrix:
"""Returns the 3x4 RT matrix from the given camera.
Taken from Zero123, which in turn was taken from
https://github.com/panmari/stanford-shapenet-renderer/blob/master/render_blender.py
Args:
cam (bpy.types.Object): The camera object.
Returns:
Matrix: The 3x4 RT matrix from the given camera.
"""
# Use matrix_world instead to account for all constraints
location, rotation = cam.matrix_world.decompose()[0:2]
R_world2bcam = rotation.to_matrix().transposed()
# Use location from matrix_world to account for constraints:
T_world2bcam = -1 * R_world2bcam @ location
# put into 3x4 matrix
RT = Matrix(
(
R_world2bcam[0][:] + (T_world2bcam[0],),
R_world2bcam[1][:] + (T_world2bcam[1],),
R_world2bcam[2][:] + (T_world2bcam[2],),
)
)
return RT
def delete_invisible_objects() -> None:
"""Deletes all invisible objects in the scene.
Returns:
None
"""
bpy.ops.object.select_all(action="DESELECT")
for obj in scene.objects:
if obj.hide_viewport or obj.hide_render:
obj.hide_viewport = False
obj.hide_render = False
obj.hide_select = False
obj.select_set(True)
bpy.ops.object.delete()
# Delete invisible collections
invisible_collections = [col for col in bpy.data.collections if col.hide_viewport]
for col in invisible_collections:
bpy.data.collections.remove(col)
def normalize_scene() -> None:
"""Normalizes the scene by scaling and translating it to fit in a unit cube centered
at the origin.
Mostly taken from the Point-E / Shap-E rendering script
(https://github.com/openai/point-e/blob/main/point_e/evals/scripts/blender_script.py#L97-L112),
but fix for multiple root objects: (see bug report here:
https://github.com/openai/shap-e/pull/60).
Returns:
None
"""
if len(list(get_scene_root_objects())) > 1:
# create an empty object to be used as a parent for all root objects
parent_empty = bpy.data.objects.new("ParentEmpty", None)
bpy.context.scene.collection.objects.link(parent_empty)
# parent all root objects to the empty object
for obj in get_scene_root_objects():
if obj != parent_empty:
obj.parent = parent_empty
bbox_min, bbox_max = scene_bbox()
scale = 1 / max(bbox_max - bbox_min)
for obj in get_scene_root_objects():
obj.scale = obj.scale * scale
# Apply scale to matrix_world.
bpy.context.view_layer.update()
bbox_min, bbox_max = scene_bbox()
offset = -(bbox_min + bbox_max) / 2
for obj in get_scene_root_objects():
obj.matrix_world.translation += offset
bpy.ops.object.select_all(action="DESELECT")
# unparent the camera
bpy.data.objects["Camera"].parent = None
def delete_missing_textures() -> Dict[str, Any]:
"""Deletes all missing textures in the scene.
Returns:
Dict[str, Any]: Dictionary with keys "count", "files", and "file_path_to_color".
"count" is the number of missing textures, "files" is a list of the missing
texture file paths, and "file_path_to_color" is a dictionary mapping the
missing texture file paths to a random color.
"""
missing_file_count = 0
out_files = []
file_path_to_color = {}
# Check all materials in the scene
for material in bpy.data.materials:
if material.use_nodes:
for node in material.node_tree.nodes:
if node.type == "TEX_IMAGE":
image = node.image
if image is not None:
file_path = bpy.path.abspath(image.filepath)
if file_path == "":
# means it's embedded
continue
if not os.path.exists(file_path):
# Find the connected Principled BSDF node
connected_node = node.outputs[0].links[0].to_node
if connected_node.type == "BSDF_PRINCIPLED":
if file_path not in file_path_to_color:
# Set a random color for the unique missing file path
random_color = [random.random() for _ in range(3)]
file_path_to_color[file_path] = random_color + [1]
connected_node.inputs[
"Base Color"
].default_value = file_path_to_color[file_path]
# Delete the TEX_IMAGE node
material.node_tree.nodes.remove(node)
missing_file_count += 1
out_files.append(image.filepath)
return {
"count": missing_file_count,
"files": out_files,
"file_path_to_color": file_path_to_color,
}
def _get_random_color() -> Tuple[float, float, float, float]:
"""Generates a random RGB-A color.
The alpha value is always 1.
Returns:
Tuple[float, float, float, float]: A random RGB-A color. Each value is in the
range [0, 1].
"""
return (random.random(), random.random(), random.random(), 1)
def _apply_color_to_object(
obj: bpy.types.Object, color: Tuple[float, float, float, float]
) -> None:
"""Applies the given color to the object.
Args:
obj (bpy.types.Object): The object to apply the color to.
color (Tuple[float, float, float, float]): The color to apply to the object.
Returns:
None
"""
mat = bpy.data.materials.new(name=f"RandomMaterial_{obj.name}")
mat.use_nodes = True
nodes = mat.node_tree.nodes
principled_bsdf = nodes.get("Principled BSDF")
if principled_bsdf:
principled_bsdf.inputs["Base Color"].default_value = color
obj.data.materials.append(mat)
def apply_single_random_color_to_all_objects() -> Tuple[float, float, float, float]:
"""Applies a single random color to all objects in the scene.
Returns:
Tuple[float, float, float, float]: The random color that was applied to all
objects.
"""
rand_color = _get_random_color()
for obj in bpy.context.scene.objects:
if obj.type == "MESH":
_apply_color_to_object(obj, rand_color)
return rand_color
class MetadataExtractor:
"""Class to extract metadata from a Blender scene."""
def __init__(
self, object_path: str, scene: bpy.types.Scene, bdata: bpy.types.BlendData
) -> None:
"""Initializes the MetadataExtractor.
Args:
object_path (str): Path to the object file.
scene (bpy.types.Scene): The current scene object from `bpy.context.scene`.
bdata (bpy.types.BlendData): The current blender data from `bpy.data`.
Returns:
None
"""
self.object_path = object_path
self.scene = scene
self.bdata = bdata
def get_poly_count(self) -> int:
"""Returns the total number of polygons in the scene."""
total_poly_count = 0
for obj in self.scene.objects:
if obj.type == "MESH":
total_poly_count += len(obj.data.polygons)
return total_poly_count
def get_vertex_count(self) -> int:
"""Returns the total number of vertices in the scene."""
total_vertex_count = 0
for obj in self.scene.objects:
if obj.type == "MESH":
total_vertex_count += len(obj.data.vertices)
return total_vertex_count
def get_edge_count(self) -> int:
"""Returns the total number of edges in the scene."""
total_edge_count = 0
for obj in self.scene.objects:
if obj.type == "MESH":
total_edge_count += len(obj.data.edges)
return total_edge_count
def get_lamp_count(self) -> int:
"""Returns the number of lamps in the scene."""
return sum(1 for obj in self.scene.objects if obj.type == "LIGHT")
def get_mesh_count(self) -> int:
"""Returns the number of meshes in the scene."""
return sum(1 for obj in self.scene.objects if obj.type == "MESH")
def get_material_count(self) -> int:
"""Returns the number of materials in the scene."""
return len(self.bdata.materials)
def get_object_count(self) -> int:
"""Returns the number of objects in the scene."""
return len(self.bdata.objects)
def get_animation_count(self) -> int:
"""Returns the number of animations in the scene."""
return len(self.bdata.actions)
def get_linked_files(self) -> List[str]:
"""Returns the filepaths of all linked files."""
image_filepaths = self._get_image_filepaths()
material_filepaths = self._get_material_filepaths()
linked_libraries_filepaths = self._get_linked_libraries_filepaths()
all_filepaths = (
image_filepaths | material_filepaths | linked_libraries_filepaths
)
if "" in all_filepaths:
all_filepaths.remove("")
return list(all_filepaths)
def _get_image_filepaths(self) -> Set[str]:
"""Returns the filepaths of all images used in the scene."""
filepaths = set()
for image in self.bdata.images:
if image.source == "FILE":
filepaths.add(bpy.path.abspath(image.filepath))
return filepaths
def _get_material_filepaths(self) -> Set[str]:
"""Returns the filepaths of all images used in materials."""
filepaths = set()
for material in self.bdata.materials:
if material.use_nodes:
for node in material.node_tree.nodes:
if node.type == "TEX_IMAGE":
image = node.image
if image is not None:
filepaths.add(bpy.path.abspath(image.filepath))
return filepaths
def _get_linked_libraries_filepaths(self) -> Set[str]:
"""Returns the filepaths of all linked libraries."""
filepaths = set()
for library in self.bdata.libraries:
filepaths.add(bpy.path.abspath(library.filepath))
return filepaths
def get_scene_size(self) -> Dict[str, list]:
"""Returns the size of the scene bounds in meters."""
bbox_min, bbox_max = scene_bbox()
return {"bbox_max": list(bbox_max), "bbox_min": list(bbox_min)}
def get_shape_key_count(self) -> int:
"""Returns the number of shape keys in the scene."""
total_shape_key_count = 0
for obj in self.scene.objects:
if obj.type == "MESH":
shape_keys = obj.data.shape_keys
if shape_keys is not None:
total_shape_key_count += (
len(shape_keys.key_blocks) - 1
) # Subtract 1 to exclude the Basis shape key
return total_shape_key_count
def get_armature_count(self) -> int:
"""Returns the number of armatures in the scene."""
total_armature_count = 0
for obj in self.scene.objects:
if obj.type == "ARMATURE":
total_armature_count += 1
return total_armature_count
def read_file_size(self) -> int:
"""Returns the size of the file in bytes."""
return os.path.getsize(self.object_path)
def get_metadata(self) -> Dict[str, Any]:
"""Returns the metadata of the scene.
Returns:
Dict[str, Any]: Dictionary of the metadata with keys for "file_size",
"poly_count", "vert_count", "edge_count", "material_count", "object_count",
"lamp_count", "mesh_count", "animation_count", "linked_files", "scene_size",
"shape_key_count", and "armature_count".
"""
return {
"file_size": self.read_file_size(),
"poly_count": self.get_poly_count(),
"vert_count": self.get_vertex_count(),
"edge_count": self.get_edge_count(),
"material_count": self.get_material_count(),
"object_count": self.get_object_count(),
"lamp_count": self.get_lamp_count(),
"mesh_count": self.get_mesh_count(),
"animation_count": self.get_animation_count(),
"linked_files": self.get_linked_files(),
"scene_size": self.get_scene_size(),
"shape_key_count": self.get_shape_key_count(),
"armature_count": self.get_armature_count(),
}
def render_object(
object_file: str,
num_renders: int,
only_northern_hemisphere: bool,
output_dir: str,
) -> None:
"""Saves rendered images with its camera matrix and metadata of the object.
Args:
object_file (str): Path to the object file.
num_renders (int): Number of renders to save of the object.
only_northern_hemisphere (bool): Whether to only render sides of the object that
are in the northern hemisphere. This is useful for rendering objects that
are photogrammetrically scanned, as the bottom of the object often has
holes.
output_dir (str): Path to the directory where the rendered images and metadata
will be saved.
Returns:
None
"""
os.makedirs(output_dir, exist_ok=True)
# load the object
if object_file.endswith(".blend"):
bpy.ops.object.mode_set(mode="OBJECT")
reset_cameras()
delete_invisible_objects()
else:
reset_scene()
load_object(object_file)
# Set up cameras
cam = scene.objects["Camera"]
cam.data.lens = 35
cam.data.sensor_width = 32
# Set up camera constraints
cam_constraint = cam.constraints.new(type="TRACK_TO")
cam_constraint.track_axis = "TRACK_NEGATIVE_Z"
cam_constraint.up_axis = "UP_Y"
empty = bpy.data.objects.new("Empty", None)
scene.collection.objects.link(empty)
cam_constraint.target = empty
# Extract the metadata. This must be done before normalizing the scene to get
# accurate bounding box information.
metadata_extractor = MetadataExtractor(
object_path=object_file, scene=scene, bdata=bpy.data
)
metadata = metadata_extractor.get_metadata()
# delete all objects that are not meshes
if object_file.lower().endswith(".usdz"):
# don't delete missing textures on usdz files, lots of them are embedded
missing_textures = None
else:
missing_textures = delete_missing_textures()
metadata["missing_textures"] = missing_textures
# possibly apply a random color to all objects
if object_file.endswith(".stl") or object_file.endswith(".ply"):
assert len(bpy.context.selected_objects) == 1
rand_color = apply_single_random_color_to_all_objects()
metadata["random_color"] = rand_color
else:
metadata["random_color"] = None
# save metadata
metadata_path = os.path.join(output_dir, "metadata.json")
os.makedirs(os.path.dirname(metadata_path), exist_ok=True)
with open(metadata_path, "w", encoding="utf-8") as f:
json.dump(metadata, f, sort_keys=True, indent=2)
# normalize the scene
normalize_scene()
# randomize the lighting
randomize_lighting()
# render the images
for i in range(num_renders):
# set camera
camera = randomize_camera(
only_northern_hemisphere=only_northern_hemisphere,
)
# render the image
render_path = os.path.join(output_dir, f"{i:03d}.png")
scene.render.filepath = render_path
bpy.ops.render.render(write_still=True)
# save camera RT matrix
rt_matrix = get_3x4_RT_matrix_from_blender(camera)
rt_matrix_path = os.path.join(output_dir, f"{i:03d}.npy")
np.save(rt_matrix_path, rt_matrix)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--object_path",
type=str,
required=True,
help="Path to the object file",
)
parser.add_argument(
"--output_dir",
type=str,
required=True,
help="Path to the directory where the rendered images and metadata will be saved.",
)
parser.add_argument(
"--engine",
type=str,
default="BLENDER_EEVEE",
choices=["CYCLES", "BLENDER_EEVEE"],
)
parser.add_argument(
"--only_northern_hemisphere",
action="store_true",
help="Only render the northern hemisphere of the object.",
default=False,
)
parser.add_argument(
"--num_renders",
type=int,
default=12,
help="Number of renders to save of the object.",
)
argv = sys.argv[sys.argv.index("--") + 1 :]
args = parser.parse_args(argv)
context = bpy.context
scene = context.scene
render = scene.render
# Set render settings
render.engine = args.engine
render.image_settings.file_format = "PNG"
render.image_settings.color_mode = "RGBA"
render.resolution_x = 512
render.resolution_y = 512
render.resolution_percentage = 100
# Set cycles settings
scene.cycles.device = "GPU"
scene.cycles.samples = 128
scene.cycles.diffuse_bounces = 1
scene.cycles.glossy_bounces = 1
scene.cycles.transparent_max_bounces = 3
scene.cycles.transmission_bounces = 3
scene.cycles.filter_width = 0.01
scene.cycles.use_denoising = True
scene.render.film_transparent = True
bpy.context.preferences.addons["cycles"].preferences.get_devices()
bpy.context.preferences.addons[
"cycles"
].preferences.compute_device_type = "CUDA" # or "OPENCL"
# Render the images
render_object(
object_file=args.object_path,
num_renders=args.num_renders,
only_northern_hemisphere=args.only_northern_hemisphere,
output_dir=args.output_dir,
)
|