Datasets:

Languages:
English
ArXiv:
License:
File size: 15,609 Bytes
203a301
 
 
 
 
 
 
 
 
f313dd0
203a301
f8691db
203a301
 
 
 
 
 
 
 
 
 
 
d6b9526
203a301
 
 
 
d6b9526
203a301
 
 
 
d6b9526
203a301
 
 
 
 
d6b9526
203a301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b9526
 
203a301
d6b9526
203a301
 
 
 
 
d6b9526
 
 
203a301
 
 
 
 
 
 
d6b9526
 
203a301
d6b9526
 
203a301
 
 
 
 
 
 
 
 
 
 
 
 
d6b9526
203a301
d6b9526
 
203a301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b9526
 
 
 
 
 
 
 
203a301
 
 
 
 
 
 
 
 
 
d6b9526
 
 
 
 
 
 
 
 
 
203a301
 
d6b9526
 
 
 
 
 
 
 
 
203a301
 
 
 
 
d6b9526
 
203a301
 
 
 
 
 
 
 
 
 
 
 
d6b9526
 
 
 
203a301
 
 
d6b9526
 
203a301
d6b9526
203a301
 
 
 
 
 
 
 
 
 
d6b9526
 
203a301
d6b9526
 
203a301
 
 
 
 
 
d6b9526
203a301
 
 
d6b9526
 
 
 
 
203a301
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b9526
 
 
 
 
 
 
203a301
 
 
 
 
 
 
 
 
 
 
 
 
 
d6b9526
 
 
 
 
203a301
 
 
 
 
d6b9526
 
203a301
 
d6b9526
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203a301
 
 
 
d6b9526
203a301
 
 
 
 
 
 
 
 
 
d6b9526
 
203a301
 
 
 
 
 
d6b9526
203a301
 
 
 
d6b9526
203a301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import glob
import json
import multiprocessing
import os
import platform
import random
import subprocess
import tempfile
import time
import zipfile
from functools import partial
from typing import Any, Callable, Dict, List, Literal, Optional, Union

import fire
import fsspec
import GPUtil
import pandas as pd
from loguru import logger

from objaverse_xl.github import download_github_objects
from objaverse_xl.utils import get_uid_from_str


def log_processed_object(csv_filename: str, *args) -> None:
    """Log when an object is done being used.

    Args:
        csv_filename (str): Name of the CSV file to save the logs to.
        *args: Arguments to save to the CSV file.

    Returns:
        None
    """
    args = ",".join([str(arg) for arg in args])
    # log that this object was rendered successfully
    # saving locally to avoid excessive writes to the cloud
    dirname = os.path.expanduser(f"~/.objaverse/github/logs/")
    os.makedirs(dirname, exist_ok=True)
    with open(os.path.join(dirname, csv_filename), "a", encoding="utf-8") as f:
        f.write(f"{time.time()},{args}\n")


def zipdir(path: str, ziph: zipfile.ZipFile) -> None:
    """Zip up a directory with an arcname structure.

    Args:
        path (str): Path to the directory to zip.
        ziph (zipfile.ZipFile): ZipFile handler object to write to.

    Returns:
        None
    """
    # ziph is zipfile handle
    for root, dirs, files in os.walk(path):
        for file in files:
            # this ensures the structure inside the zip starts at folder/
            arcname = os.path.join(os.path.basename(root), file)
            ziph.write(os.path.join(root, file), arcname=arcname)


def handle_found_object(
    local_path: str,
    file_identifier: str,
    sha256: str,
    metadata: Dict[str, Any],
    num_renders: int,
    render_dir: str,
    only_northern_hemisphere: bool,
    gpu_devices: Union[int, List[int]],
    render_timeout: int,
    successful_log_file: Optional[str] = "handle-found-object-successful.csv",
    failed_log_file: Optional[str] = "handle-found-object-failed.csv",
) -> bool:
    """Called when an object is successfully found and downloaded.

    Here, the object has the same sha256 as the one that was downloaded with
    Objaverse-XL. If None, the object will be downloaded, but nothing will be done with
    it.

    Args:
        local_path (str): Local path to the downloaded 3D object.
        file_identifier (str): GitHub URL of the 3D object.
        sha256 (str): SHA256 of the contents of the 3D object.
        metadata (Dict[str, Any]): Metadata about the 3D object, including keys for
            `github_organization` and `github_repo`.
        num_renders (int): Number of renders to save of the object.
        render_dir (str): Directory where the objects will be rendered.
        only_northern_hemisphere (bool): Only render the northern hemisphere of the
            object.
        gpu_devices (Union[int, List[int]]): GPU device(s) to use for rendering. If
            an int, the GPU device will be randomly selected from 0 to gpu_devices - 1.
            If a list, the GPU device will be randomly selected from the list.
            If 0, the CPU will be used for rendering.
        render_timeout (int): Number of seconds to wait for the rendering job to
            complete.
        successful_log_file (str): Name of the log file to save successful renders to.
        failed_log_file (str): Name of the log file to save failed renders to.

    Returns: True if the object was rendered successfully, False otherwise.
    """
    save_uid = get_uid_from_str(file_identifier)
    args = f"--object_path '{local_path}' --num_renders {num_renders}"

    # get the GPU to use for rendering
    using_gpu: bool = True
    gpu_i = 0
    if isinstance(gpu_devices, int) and gpu_devices > 0:
        num_gpus = gpu_devices
        gpu_i = random.randint(0, num_gpus - 1)
    elif isinstance(gpu_devices, list):
        gpu_i = random.choice(gpu_devices)
    elif isinstance(gpu_devices, int) and gpu_devices == 0:
        using_gpu = False
    else:
        raise ValueError(
            f"gpu_devices must be an int > 0, 0, or a list of ints. Got {gpu_devices}."
        )

    with tempfile.TemporaryDirectory() as temp_dir:
        # get the target directory for the rendering job
        target_directory = os.path.join(temp_dir, save_uid)
        os.makedirs(target_directory, exist_ok=True)
        args += f" --output_dir {target_directory}"

        # check for Linux / Ubuntu or MacOS
        if platform.system() == "Linux" and using_gpu:
            args += " --engine BLENDER_EEVEE"
        elif platform.system() == "Darwin" or (
            platform.system() == "Linux" and not using_gpu
        ):
            # As far as I know, MacOS does not support BLENER_EEVEE, which uses GPU
            # rendering. Generally, I'd only recommend using MacOS for debugging and
            # small rendering jobs, since CYCLES is much slower than BLENDER_EEVEE.
            args += " --engine CYCLES"
        else:
            raise NotImplementedError(f"Platform {platform.system()} is not supported.")

        # check if we should only render the northern hemisphere
        if only_northern_hemisphere:
            args += " --only_northern_hemisphere"

        # get the command to run
        command = f"blender-3.2.2-linux-x64/blender --background --python blender_script.py -- {args}"
        if using_gpu:
            command = f"export DISPLAY=:0.{gpu_i} && {command}"

        # render the object (put in dev null)
        subprocess.run(
            ["bash", "-c", command],
            timeout=render_timeout,
            check=False,
            stdout=subprocess.DEVNULL,
            stderr=subprocess.DEVNULL,
        )

        # check that the renders were saved successfully
        png_files = glob.glob(os.path.join(target_directory, "*.png"))
        metadata_files = glob.glob(os.path.join(target_directory, "*.json"))
        npy_files = glob.glob(os.path.join(target_directory, "*.npy"))
        if (
            (len(png_files) != num_renders)
            or (len(npy_files) != num_renders)
            or (len(metadata_files) != 1)
        ):
            logger.error(
                f"Found object {file_identifier} was not rendered successfully!"
            )
            if failed_log_file is not None:
                log_processed_object(
                    failed_log_file,
                    file_identifier,
                    sha256,
                )
            return False

        # update the metadata
        metadata_path = os.path.join(target_directory, "metadata.json")
        with open(metadata_path, "r", encoding="utf-8") as f:
            metadata_file = json.load(f)
        metadata_file["sha256"] = sha256
        metadata_file["file_identifier"] = file_identifier
        metadata_file["save_uid"] = save_uid
        metadata_file["metadata"] = metadata
        with open(metadata_path, "w", encoding="utf-8") as f:
            json.dump(metadata, f, indent=2, sort_keys=True)

        # Make a zip of the target_directory.
        # Keeps the {save_uid} directory structure when unzipped
        with zipfile.ZipFile(
            f"{target_directory}.zip", "w", zipfile.ZIP_DEFLATED
        ) as ziph:
            zipdir(target_directory, ziph)

        # move the zip to the render_dir
        fs, path = fsspec.core.url_to_fs(render_dir)

        # move the zip to the render_dir
        fs.makedirs(os.path.join(path, "github", "renders"), exist_ok=True)
        fs.put(
            os.path.join(f"{target_directory}.zip"),
            os.path.join(path, "github", "renders", f"{save_uid}.zip"),
        )

        # log that this object was rendered successfully
        if successful_log_file is not None:
            log_processed_object(successful_log_file, file_identifier, sha256)

        return True


def handle_new_object(
    local_path: str,
    file_identifier: str,
    sha256: str,
    metadata: Dict[str, Any],
    log_file: str = "handle-new-object.csv",
) -> None:
    """Called when a new object is found.

    Here, the object is not used in Objaverse-XL, but is still downloaded with the
    repository. The object may have not been used because it does not successfully
    import into Blender. If None, the object will be downloaded, but nothing will be
    done with it.

    Args:
        local_path (str): Local path to the downloaded 3D object.
        file_identifier (str): GitHub URL of the 3D object.
        sha256 (str): SHA256 of the contents of the 3D object.
        metadata (Dict[str, Any]): Metadata about the 3D object, including the GitHub
            organization and repo names.
        log_file (str): Name of the log file to save the handle_new_object logs to.

    Returns:
        None
    """
    # log the new object
    log_processed_object(log_file, file_identifier, sha256)


def handle_modified_object(
    local_path: str,
    file_identifier: str,
    new_sha256: str,
    old_sha256: str,
    metadata: Dict[str, Any],
    num_renders: int,
    render_dir: str,
    only_northern_hemisphere: bool,
    gpu_devices: Union[int, List[int]],
    render_timeout: int,
) -> None:
    """Called when a modified object is found and downloaded.

    Here, the object is successfully downloaded, but it has a different sha256 than the
    one that was downloaded with Objaverse-XL. This is not expected to happen very
    often, because the same commit hash is used for each repo. If None, the object will
    be downloaded, but nothing will be done with it.

    Args:
        local_path (str): Local path to the downloaded 3D object.
        file_identifier (str): GitHub URL of the 3D object.
        new_sha256 (str): SHA256 of the contents of the newly downloaded 3D object.
        old_sha256 (str): Expected SHA256 of the contents of the 3D object as it was
            when it was downloaded with Objaverse-XL.
        metadata (Dict[str, Any]): Metadata about the 3D object, including the GitHub
            organization and repo names.
        num_renders (int): Number of renders to save of the object.
        render_dir (str): Directory where the objects will be rendered.
        only_northern_hemisphere (bool): Only render the northern hemisphere of the
            object.
        gpu_devices (Union[int, List[int]]): GPU device(s) to use for rendering. If
            an int, the GPU device will be randomly selected from 0 to gpu_devices - 1.
            If a list, the GPU device will be randomly selected from the list.
            If 0, the CPU will be used for rendering.
        render_timeout (int): Number of seconds to wait for the rendering job to
            complete.

    Returns:
        None
    """
    success = handle_found_object(
        local_path=local_path,
        file_identifier=file_identifier,
        sha256=new_sha256,
        metadata=metadata,
        num_renders=num_renders,
        render_dir=render_dir,
        only_northern_hemisphere=only_northern_hemisphere,
        gpu_devices=gpu_devices,
        render_timeout=render_timeout,
        successful_log_file=None,
        failed_log_file=None,
    )

    if success:
        log_processed_object(
            "handle-modified-object-successful.csv",
            file_identifier,
            old_sha256,
            new_sha256,
        )
    else:
        log_processed_object(
            "handle-modified-object-failed.csv",
            file_identifier,
            old_sha256,
            new_sha256,
        )


def handle_missing_object(
    github_url: str,
    sha256: str,
    metadata: Dict[str, Any],
    log_file: str = "handle-missing-object.csv",
) -> None:
    """Called when an object that is in Objaverse-XL is not found.

    Here, it is likely that the repository was deleted or renamed. If None, nothing
    will be done with the missing object.

    Args:
        github_url (str): GitHub URL of the 3D object.
        sha256 (str): SHA256 of the contents of the original 3D object.
        metadata (Dict[str, Any]): Metadata about the 3D object, including the GitHub
            organization and repo names.
        log_file (str): Name of the log file to save missing renders to.

    Returns:
        None
    """
    # log the missing object
    log_processed_object(log_file, github_url, sha256)


def get_example_objects() -> pd.DataFrame:
    """Returns a DataFrame of example objects to use for debugging."""
    return pd.read_json("example-objects.json", orient="records")


def render_github_objects(
    render_dir: str = "~/.objaverse",
    num_renders: int = 12,
    processes: Optional[int] = None,
    save_repo_format: Optional[Literal["zip", "tar", "tar.gz"]] = None,
    only_northern_hemisphere: bool = False,
    render_timeout: int = 300,
    gpu_devices: Optional[Union[int, List[int]]] = None,
) -> None:
    """Renders all GitHub objects in the Objaverse-XL dataset.

    Args:
        render_dir (str): Directory where the objects will be rendered.
        num_renders (int): Number of renders to save of the object.
        processes (Optional[int]): Number of processes to use for downloading the
            objects. If None, defaults to multiprocessing.cpu_count() * 3.
        save_repo_format (Optional[Literal["zip", "tar", "tar.gz"]]): If not None,
            the GitHub repo will be deleted after rendering each object from it.
        only_northern_hemisphere (bool): Only render the northern hemisphere of the
            object. Useful for rendering objects that are obtained from photogrammetry,
            since the southern hemisphere is often has holes.
        render_timeout (int): Number of seconds to wait for the rendering job to
            complete.
        gpu_devices (Optional[Union[int, List[int]]]): GPU device(s) to use for
            rendering. If an int, the GPU device will be randomly selected from 0 to
            gpu_devices - 1. If a list, the GPU device will be randomly selected from
            the list. If 0, the CPU will be used for rendering. If None, defaults to
            use all available GPUs.

    Returns:
        None
    """
    if platform.system() not in ["Linux", "Darwin"]:
        raise NotImplementedError(
            f"Platform {platform.system()} is not supported. Use Linux or MacOS."
        )

    # get the gpu devices to use
    parsed_gpu_devices: Union[int, List[int]] = 0
    if gpu_devices is None:
        parsed_gpu_devices = len(GPUtil.getGPUs())

    if processes is None:
        processes = multiprocessing.cpu_count() * 3

    objects = get_example_objects()
    download_github_objects(
        objects=objects,
        processes=processes,
        save_repo_format=save_repo_format,
        download_dir=render_dir,  # only used when save_repo_format is not None
        handle_found_object=partial(
            handle_found_object,
            render_dir=render_dir,
            num_renders=num_renders,
            only_northern_hemisphere=only_northern_hemisphere,
            gpu_devices=parsed_gpu_devices,
            render_timeout=render_timeout,
        ),
        handle_new_object=handle_new_object,
        handle_modified_object=partial(
            handle_modified_object,
            render_dir=render_dir,
            num_renders=num_renders,
            gpu_devices=parsed_gpu_devices,
            only_northern_hemisphere=only_northern_hemisphere,
        ),
        handle_missing_object=handle_missing_object,
    )


if __name__ == "__main__":
    fire.Fire(render_github_objects)