Datasets:

Languages:
English
ArXiv:
License:
File size: 30,075 Bytes
203a301
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
"""Blender script to render images of 3D models."""

import argparse
import json
import math
import os
import random
import sys
from typing import Any, Callable, Dict, Generator, List, Literal, Optional, Set, Tuple

import bpy
import numpy as np
from mathutils import Matrix, Vector

IMPORT_FUNCTIONS: Dict[str, Callable] = {
    "obj": bpy.ops.import_scene.obj,
    "glb": bpy.ops.import_scene.gltf,
    "gltf": bpy.ops.import_scene.gltf,
    "usd": bpy.ops.import_scene.usd,
    "fbx": bpy.ops.import_scene.fbx,
    "stl": bpy.ops.import_mesh.stl,
    "usda": bpy.ops.import_scene.usda,
    "dae": bpy.ops.wm.collada_import,
    "ply": bpy.ops.import_mesh.ply,
    "abc": bpy.ops.wm.alembic_import,
    "blend": bpy.ops.wm.append,
}


def reset_cameras() -> None:
    """Resets the cameras in the scene to a single default camera."""
    # Delete all existing cameras
    bpy.ops.object.select_all(action="DESELECT")
    bpy.ops.object.select_by_type(type="CAMERA")
    bpy.ops.object.delete()

    # Create a new camera with default properties
    bpy.ops.object.camera_add()

    # Rename the new camera to 'NewDefaultCamera'
    new_camera = bpy.context.active_object
    new_camera.name = "Camera"

    # Set the new camera as the active camera for the scene
    scene.camera = new_camera


def sample_point_on_sphere(radius: float) -> Tuple[float, float, float]:
    """Samples a point on a sphere with the given radius.

    Args:
        radius (float): Radius of the sphere.

    Returns:
        Tuple[float, float, float]: A point on the sphere.
    """
    theta = random.random() * 2 * math.pi
    phi = math.acos(2 * random.random() - 1)
    return (
        radius * math.sin(phi) * math.cos(theta),
        radius * math.sin(phi) * math.sin(theta),
        radius * math.cos(phi),
    )


def _sample_spherical(
    radius_min: float = 1.5,
    radius_max: float = 2.0,
    maxz: float = 1.6,
    minz: float = -0.75,
) -> np.ndarray:
    """Sample a random point in a spherical shell.

    Args:
        radius_min (float): Minimum radius of the spherical shell.
        radius_max (float): Maximum radius of the spherical shell.
        maxz (float): Maximum z value of the spherical shell.
        minz (float): Minimum z value of the spherical shell.

    Returns:
        np.ndarray: A random (x, y, z) point in the spherical shell.
    """
    correct = False
    vec = np.array([0, 0, 0])
    while not correct:
        vec = np.random.uniform(-1, 1, 3)
        #         vec[2] = np.abs(vec[2])
        radius = np.random.uniform(radius_min, radius_max, 1)
        vec = vec / np.linalg.norm(vec, axis=0) * radius[0]
        if maxz > vec[2] > minz:
            correct = True
    return vec


def randomize_camera(
    radius_min: float = 1.5,
    radius_max: float = 2.2,
    maxz: float = 2.2,
    minz: float = -2.2,
    only_northern_hemisphere: bool = False,
) -> bpy.types.Object:
    """Randomizes the camera location and rotation inside of a spherical shell.

    Args:
        radius_min (float, optional): Minimum radius of the spherical shell. Defaults to
            1.5.
        radius_max (float, optional): Maximum radius of the spherical shell. Defaults to
            2.0.
        maxz (float, optional): Maximum z value of the spherical shell. Defaults to 1.6.
        minz (float, optional): Minimum z value of the spherical shell. Defaults to
            -0.75.
        only_northern_hemisphere (bool, optional): Whether to only sample points in the
            northern hemisphere. Defaults to False.

    Returns:
        bpy.types.Object: The camera object.
    """

    x, y, z = _sample_spherical(
        radius_min=radius_min, radius_max=radius_max, maxz=maxz, minz=minz
    )
    camera = bpy.data.objects["Camera"]

    # only positive z
    if only_northern_hemisphere:
        z = abs(z)

    camera.location = Vector(np.array([x, y, z]))

    direction = -camera.location
    rot_quat = direction.to_track_quat("-Z", "Y")
    camera.rotation_euler = rot_quat.to_euler()

    return camera


def _set_camera_at_size(i: int, scale: float = 1.5) -> bpy.types.Object:
    """Debugging function to set the camera on the 6 faces of a cube.

    Args:
        i (int): Index of the face of the cube.
        scale (float, optional): Scale of the cube. Defaults to 1.5.

    Returns:
        bpy.types.Object: The camera object.
    """
    if i == 0:
        x, y, z = scale, 0, 0
    elif i == 1:
        x, y, z = -scale, 0, 0
    elif i == 2:
        x, y, z = 0, scale, 0
    elif i == 3:
        x, y, z = 0, -scale, 0
    elif i == 4:
        x, y, z = 0, 0, scale
    elif i == 5:
        x, y, z = 0, 0, -scale
    else:
        raise ValueError(f"Invalid index: i={i}, must be int in range [0, 5].")
    camera = bpy.data.objects["Camera"]
    camera.location = Vector(np.array([x, y, z]))
    direction = -camera.location
    rot_quat = direction.to_track_quat("-Z", "Y")
    camera.rotation_euler = rot_quat.to_euler()
    return camera


def _create_light(
    name: str,
    light_type: Literal["POINT", "SUN", "SPOT", "AREA"],
    location: Tuple[float, float, float],
    rotation: Tuple[float, float, float],
    energy: float,
    use_shadow: bool = False,
    specular_factor: float = 1.0,
):
    """Creates a light object.

    Args:
        name (str): Name of the light object.
        light_type (Literal["POINT", "SUN", "SPOT", "AREA"]): Type of the light.
        location (Tuple[float, float, float]): Location of the light.
        rotation (Tuple[float, float, float]): Rotation of the light.
        energy (float): Energy of the light.
        use_shadow (bool, optional): Whether to use shadows. Defaults to False.
        specular_factor (float, optional): Specular factor of the light. Defaults to 1.0.

    Returns:
        bpy.types.Object: The light object.
    """

    light_data = bpy.data.lights.new(name=name, type=light_type)
    light_object = bpy.data.objects.new(name, light_data)
    bpy.context.collection.objects.link(light_object)
    light_object.location = location
    light_object.rotation_euler = rotation
    light_data.use_shadow = use_shadow
    light_data.specular_factor = specular_factor
    light_data.energy = energy
    return light_object


def randomize_lighting() -> Dict[str, bpy.types.Object]:
    """Randomizes the lighting in the scene.

    Returns:
        Dict[str, bpy.types.Object]: Dictionary of the lights in the scene. The keys are
            "key_light", "fill_light", "rim_light", and "bottom_light".
    """

    # Clear existing lights
    bpy.ops.object.select_all(action="DESELECT")
    bpy.ops.object.select_by_type(type="LIGHT")
    bpy.ops.object.delete()

    # Create key light
    key_light = _create_light(
        name="Key_Light",
        light_type="SUN",
        location=(0, 0, 0),
        rotation=(0.785398, 0, -0.785398),
        energy=random.choice([3, 4, 5]),
    )

    # Create fill light
    fill_light = _create_light(
        name="Fill_Light",
        light_type="SUN",
        location=(0, 0, 0),
        rotation=(0.785398, 0, 2.35619),
        energy=random.choice([2, 3, 4]),
    )

    # Create rim light
    rim_light = _create_light(
        name="Rim_Light",
        light_type="SUN",
        location=(0, 0, 0),
        rotation=(-0.785398, 0, -3.92699),
        energy=random.choice([3, 4, 5]),
    )

    # Create bottom light
    bottom_light = _create_light(
        name="Bottom_Light",
        light_type="SUN",
        location=(0, 0, 0),
        rotation=(3.14159, 0, 0),
        energy=random.choice([1, 2, 3]),
    )

    return dict(
        key_light=key_light,
        fill_light=fill_light,
        rim_light=rim_light,
        bottom_light=bottom_light,
    )


def reset_scene() -> None:
    """Resets the scene to a clean state.

    Returns:
        None
    """
    # delete everything that isn't part of a camera or a light
    for obj in bpy.data.objects:
        if obj.type not in {"CAMERA", "LIGHT"}:
            bpy.data.objects.remove(obj, do_unlink=True)

    # delete all the materials
    for material in bpy.data.materials:
        bpy.data.materials.remove(material, do_unlink=True)

    # delete all the textures
    for texture in bpy.data.textures:
        bpy.data.textures.remove(texture, do_unlink=True)

    # delete all the images
    for image in bpy.data.images:
        bpy.data.images.remove(image, do_unlink=True)


def load_object(object_path: str) -> None:
    """Loads a model with a supported file extension into the scene.

    Args:
        object_path (str): Path to the model file.

    Raises:
        ValueError: If the file extension is not supported.

    Returns:
        None
    """
    file_extension = object_path.split(".")[-1].lower()
    if file_extension is None:
        raise ValueError(f"Unsupported file type: {object_path}")

    if file_extension == "usdz":
        # install usdz io package
        dirname = os.path.dirname(os.path.realpath(__file__))
        usdz_package = os.path.join(dirname, "io_scene_usdz.zip")
        bpy.ops.preferences.addon_install(filepath=usdz_package)
        # enable it
        addon_name = "io_scene_usdz"
        bpy.ops.preferences.addon_enable(module=addon_name)
        # import the usdz
        from io_scene_usdz.import_usdz import import_usdz

        import_usdz(context, filepath=object_path, materials=True, animations=True)
        return None

    # load from existing import functions
    import_function = IMPORT_FUNCTIONS[file_extension]

    if file_extension == "blend":
        import_function(directory=object_path, link=False)
    elif file_extension in {"glb", "gltf"}:
        import_function(filepath=object_path, merge_vertices=True)
    else:
        import_function(filepath=object_path)


def scene_bbox(
    single_obj: Optional[bpy.types.Object] = None, ignore_matrix: bool = False
) -> Tuple[Vector, Vector]:
    """Returns the bounding box of the scene.

    Taken from Shap-E rendering script
    (https://github.com/openai/shap-e/blob/main/shap_e/rendering/blender/blender_script.py#L68-L82)

    Args:
        single_obj (Optional[bpy.types.Object], optional): If not None, only computes
            the bounding box for the given object. Defaults to None.
        ignore_matrix (bool, optional): Whether to ignore the object's matrix. Defaults
            to False.

    Raises:
        RuntimeError: If there are no objects in the scene.

    Returns:
        Tuple[Vector, Vector]: The minimum and maximum coordinates of the bounding box.
    """
    bbox_min = (math.inf,) * 3
    bbox_max = (-math.inf,) * 3
    found = False
    for obj in get_scene_meshes() if single_obj is None else [single_obj]:
        found = True
        for coord in obj.bound_box:
            coord = Vector(coord)
            if not ignore_matrix:
                coord = obj.matrix_world @ coord
            bbox_min = tuple(min(x, y) for x, y in zip(bbox_min, coord))
            bbox_max = tuple(max(x, y) for x, y in zip(bbox_max, coord))

    if not found:
        raise RuntimeError("no objects in scene to compute bounding box for")

    return Vector(bbox_min), Vector(bbox_max)


def get_scene_root_objects() -> Generator[bpy.types.Object, None, None]:
    """Returns all root objects in the scene.

    Yields:
        Generator[bpy.types.Object, None, None]: Generator of all root objects in the
            scene.
    """
    for obj in bpy.context.scene.objects.values():
        if not obj.parent:
            yield obj


def get_scene_meshes() -> Generator[bpy.types.Object, None, None]:
    """Returns all meshes in the scene.

    Yields:
        Generator[bpy.types.Object, None, None]: Generator of all meshes in the scene.
    """
    for obj in bpy.context.scene.objects.values():
        if isinstance(obj.data, (bpy.types.Mesh)):
            yield obj


def get_3x4_RT_matrix_from_blender(cam: bpy.types.Object) -> Matrix:
    """Returns the 3x4 RT matrix from the given camera.

    Taken from Zero123, which in turn was taken from
    https://github.com/panmari/stanford-shapenet-renderer/blob/master/render_blender.py

    Args:
        cam (bpy.types.Object): The camera object.

    Returns:
        Matrix: The 3x4 RT matrix from the given camera.
    """
    # Use matrix_world instead to account for all constraints
    location, rotation = cam.matrix_world.decompose()[0:2]
    R_world2bcam = rotation.to_matrix().transposed()

    # Use location from matrix_world to account for constraints:
    T_world2bcam = -1 * R_world2bcam @ location

    # put into 3x4 matrix
    RT = Matrix(
        (
            R_world2bcam[0][:] + (T_world2bcam[0],),
            R_world2bcam[1][:] + (T_world2bcam[1],),
            R_world2bcam[2][:] + (T_world2bcam[2],),
        )
    )
    return RT


def delete_invisible_objects() -> None:
    """Deletes all invisible objects in the scene.

    Returns:
        None
    """
    bpy.ops.object.select_all(action="DESELECT")
    for obj in scene.objects:
        if obj.hide_viewport or obj.hide_render:
            obj.hide_viewport = False
            obj.hide_render = False
            obj.hide_select = False
            obj.select_set(True)
    bpy.ops.object.delete()

    # Delete invisible collections
    invisible_collections = [col for col in bpy.data.collections if col.hide_viewport]
    for col in invisible_collections:
        bpy.data.collections.remove(col)


def normalize_scene() -> None:
    """Normalizes the scene by scaling and translating it to fit in a unit cube centered
    at the origin.

    Mostly taken from the Point-E / Shap-E rendering script
    (https://github.com/openai/point-e/blob/main/point_e/evals/scripts/blender_script.py#L97-L112),
    but fix for multiple root objects: (see bug report here:
    https://github.com/openai/shap-e/pull/60).

    Returns:
        None
    """
    if len(list(get_scene_root_objects())) > 1:
        # create an empty object to be used as a parent for all root objects
        parent_empty = bpy.data.objects.new("ParentEmpty", None)
        bpy.context.scene.collection.objects.link(parent_empty)

        # parent all root objects to the empty object
        for obj in get_scene_root_objects():
            if obj != parent_empty:
                obj.parent = parent_empty

    bbox_min, bbox_max = scene_bbox()
    scale = 1 / max(bbox_max - bbox_min)
    for obj in get_scene_root_objects():
        obj.scale = obj.scale * scale

    # Apply scale to matrix_world.
    bpy.context.view_layer.update()
    bbox_min, bbox_max = scene_bbox()
    offset = -(bbox_min + bbox_max) / 2
    for obj in get_scene_root_objects():
        obj.matrix_world.translation += offset
    bpy.ops.object.select_all(action="DESELECT")

    # unparent the camera
    bpy.data.objects["Camera"].parent = None


def delete_missing_textures() -> Dict[str, Any]:
    """Deletes all missing textures in the scene.

    Returns:
        Dict[str, Any]: Dictionary with keys "count", "files", and "file_path_to_color".
            "count" is the number of missing textures, "files" is a list of the missing
            texture file paths, and "file_path_to_color" is a dictionary mapping the
            missing texture file paths to a random color.
    """
    missing_file_count = 0
    out_files = []
    file_path_to_color = {}

    # Check all materials in the scene
    for material in bpy.data.materials:
        if material.use_nodes:
            for node in material.node_tree.nodes:
                if node.type == "TEX_IMAGE":
                    image = node.image
                    if image is not None:
                        file_path = bpy.path.abspath(image.filepath)
                        if file_path == "":
                            # means it's embedded
                            continue

                        if not os.path.exists(file_path):
                            # Find the connected Principled BSDF node
                            connected_node = node.outputs[0].links[0].to_node

                            if connected_node.type == "BSDF_PRINCIPLED":
                                if file_path not in file_path_to_color:
                                    # Set a random color for the unique missing file path
                                    random_color = [random.random() for _ in range(3)]
                                    file_path_to_color[file_path] = random_color + [1]

                                connected_node.inputs[
                                    "Base Color"
                                ].default_value = file_path_to_color[file_path]

                            # Delete the TEX_IMAGE node
                            material.node_tree.nodes.remove(node)
                            missing_file_count += 1
                            out_files.append(image.filepath)
    return {
        "count": missing_file_count,
        "files": out_files,
        "file_path_to_color": file_path_to_color,
    }


def _get_random_color() -> Tuple[float, float, float, float]:
    """Generates a random RGB-A color.

    The alpha value is always 1.

    Returns:
        Tuple[float, float, float, float]: A random RGB-A color. Each value is in the
        range [0, 1].
    """
    return (random.random(), random.random(), random.random(), 1)


def _apply_color_to_object(
    obj: bpy.types.Object, color: Tuple[float, float, float, float]
) -> None:
    """Applies the given color to the object.

    Args:
        obj (bpy.types.Object): The object to apply the color to.
        color (Tuple[float, float, float, float]): The color to apply to the object.

    Returns:
        None
    """
    mat = bpy.data.materials.new(name=f"RandomMaterial_{obj.name}")
    mat.use_nodes = True
    nodes = mat.node_tree.nodes
    principled_bsdf = nodes.get("Principled BSDF")
    if principled_bsdf:
        principled_bsdf.inputs["Base Color"].default_value = color
    obj.data.materials.append(mat)


def apply_single_random_color_to_all_objects() -> Tuple[float, float, float, float]:
    """Applies a single random color to all objects in the scene.

    Returns:
        Tuple[float, float, float, float]: The random color that was applied to all
        objects.
    """
    rand_color = _get_random_color()
    for obj in bpy.context.scene.objects:
        if obj.type == "MESH":
            _apply_color_to_object(obj, rand_color)
    return rand_color


class MetadataExtractor:
    """Class to extract metadata from a Blender scene."""

    def __init__(
        self, object_path: str, scene: bpy.types.Scene, bdata: bpy.types.BlendData
    ) -> None:
        """Initializes the MetadataExtractor.

        Args:
            object_path (str): Path to the object file.
            scene (bpy.types.Scene): The current scene object from `bpy.context.scene`.
            bdata (bpy.types.BlendData): The current blender data from `bpy.data`.

        Returns:
            None
        """
        self.object_path = object_path
        self.scene = scene
        self.bdata = bdata

    def get_poly_count(self) -> int:
        """Returns the total number of polygons in the scene."""
        total_poly_count = 0
        for obj in self.scene.objects:
            if obj.type == "MESH":
                total_poly_count += len(obj.data.polygons)
        return total_poly_count

    def get_vertex_count(self) -> int:
        """Returns the total number of vertices in the scene."""
        total_vertex_count = 0
        for obj in self.scene.objects:
            if obj.type == "MESH":
                total_vertex_count += len(obj.data.vertices)
        return total_vertex_count

    def get_edge_count(self) -> int:
        """Returns the total number of edges in the scene."""
        total_edge_count = 0
        for obj in self.scene.objects:
            if obj.type == "MESH":
                total_edge_count += len(obj.data.edges)
        return total_edge_count

    def get_lamp_count(self) -> int:
        """Returns the number of lamps in the scene."""
        return sum(1 for obj in self.scene.objects if obj.type == "LIGHT")

    def get_mesh_count(self) -> int:
        """Returns the number of meshes in the scene."""
        return sum(1 for obj in self.scene.objects if obj.type == "MESH")

    def get_material_count(self) -> int:
        """Returns the number of materials in the scene."""
        return len(self.bdata.materials)

    def get_object_count(self) -> int:
        """Returns the number of objects in the scene."""
        return len(self.bdata.objects)

    def get_animation_count(self) -> int:
        """Returns the number of animations in the scene."""
        return len(self.bdata.actions)

    def get_linked_files(self) -> List[str]:
        """Returns the filepaths of all linked files."""
        image_filepaths = self._get_image_filepaths()
        material_filepaths = self._get_material_filepaths()
        linked_libraries_filepaths = self._get_linked_libraries_filepaths()

        all_filepaths = (
            image_filepaths | material_filepaths | linked_libraries_filepaths
        )
        if "" in all_filepaths:
            all_filepaths.remove("")
        return list(all_filepaths)

    def _get_image_filepaths(self) -> Set[str]:
        """Returns the filepaths of all images used in the scene."""
        filepaths = set()
        for image in self.bdata.images:
            if image.source == "FILE":
                filepaths.add(bpy.path.abspath(image.filepath))
        return filepaths

    def _get_material_filepaths(self) -> Set[str]:
        """Returns the filepaths of all images used in materials."""
        filepaths = set()
        for material in self.bdata.materials:
            if material.use_nodes:
                for node in material.node_tree.nodes:
                    if node.type == "TEX_IMAGE":
                        image = node.image
                        if image is not None:
                            filepaths.add(bpy.path.abspath(image.filepath))
        return filepaths

    def _get_linked_libraries_filepaths(self) -> Set[str]:
        """Returns the filepaths of all linked libraries."""
        filepaths = set()
        for library in self.bdata.libraries:
            filepaths.add(bpy.path.abspath(library.filepath))
        return filepaths

    def get_scene_size(self) -> Dict[str, list]:
        """Returns the size of the scene bounds in meters."""
        bbox_min, bbox_max = scene_bbox()
        return {"bbox_max": list(bbox_max), "bbox_min": list(bbox_min)}

    def get_shape_key_count(self) -> int:
        """Returns the number of shape keys in the scene."""
        total_shape_key_count = 0
        for obj in self.scene.objects:
            if obj.type == "MESH":
                shape_keys = obj.data.shape_keys
                if shape_keys is not None:
                    total_shape_key_count += (
                        len(shape_keys.key_blocks) - 1
                    )  # Subtract 1 to exclude the Basis shape key
        return total_shape_key_count

    def get_armature_count(self) -> int:
        """Returns the number of armatures in the scene."""
        total_armature_count = 0
        for obj in self.scene.objects:
            if obj.type == "ARMATURE":
                total_armature_count += 1
        return total_armature_count

    def read_file_size(self) -> int:
        """Returns the size of the file in bytes."""
        return os.path.getsize(self.object_path)

    def get_metadata(self) -> Dict[str, Any]:
        """Returns the metadata of the scene.

        Returns:
            Dict[str, Any]: Dictionary of the metadata with keys for "file_size",
            "poly_count", "vert_count", "edge_count", "material_count", "object_count",
            "lamp_count", "mesh_count", "animation_count", "linked_files", "scene_size",
            "shape_key_count", and "armature_count".
        """
        return {
            "file_size": self.read_file_size(),
            "poly_count": self.get_poly_count(),
            "vert_count": self.get_vertex_count(),
            "edge_count": self.get_edge_count(),
            "material_count": self.get_material_count(),
            "object_count": self.get_object_count(),
            "lamp_count": self.get_lamp_count(),
            "mesh_count": self.get_mesh_count(),
            "animation_count": self.get_animation_count(),
            "linked_files": self.get_linked_files(),
            "scene_size": self.get_scene_size(),
            "shape_key_count": self.get_shape_key_count(),
            "armature_count": self.get_armature_count(),
        }


def render_object(
    object_file: str,
    num_renders: int,
    only_northern_hemisphere: bool,
    output_dir: str,
) -> None:
    """Saves rendered images with its camera matrix and metadata of the object.

    Args:
        object_file (str): Path to the object file.
        num_renders (int): Number of renders to save of the object.
        only_northern_hemisphere (bool): Whether to only render sides of the object that
            are in the northern hemisphere. This is useful for rendering objects that
            are photogrammetrically scanned, as the bottom of the object often has
            holes.
        output_dir (str): Path to the directory where the rendered images and metadata
            will be saved.

    Returns:
        None
    """
    os.makedirs(output_dir, exist_ok=True)

    # load the object
    if object_file.endswith(".blend"):
        bpy.ops.object.mode_set(mode="OBJECT")
        reset_cameras()
        delete_invisible_objects()
    else:
        reset_scene()
        load_object(object_file)

    # Set up cameras
    cam = scene.objects["Camera"]
    cam.data.lens = 35
    cam.data.sensor_width = 32

    # Set up camera constraints
    cam_constraint = cam.constraints.new(type="TRACK_TO")
    cam_constraint.track_axis = "TRACK_NEGATIVE_Z"
    cam_constraint.up_axis = "UP_Y"
    empty = bpy.data.objects.new("Empty", None)
    scene.collection.objects.link(empty)
    cam_constraint.target = empty

    # Extract the metadata. This must be done before normalizing the scene to get
    # accurate bounding box information.
    metadata_extractor = MetadataExtractor(
        object_path=object_file, scene=scene, bdata=bpy.data
    )
    metadata = metadata_extractor.get_metadata()

    # delete all objects that are not meshes
    if object_file.lower().endswith(".usdz"):
        # don't delete missing textures on usdz files, lots of them are embedded
        missing_textures = None
    else:
        missing_textures = delete_missing_textures()
    metadata["missing_textures"] = missing_textures

    # possibly apply a random color to all objects
    if object_file.endswith(".stl") or object_file.endswith(".ply"):
        assert len(bpy.context.selected_objects) == 1
        rand_color = apply_single_random_color_to_all_objects()
        metadata["random_color"] = rand_color
    else:
        metadata["random_color"] = None

    # save metadata
    metadata_path = os.path.join(output_dir, "metadata.json")
    os.makedirs(os.path.dirname(metadata_path), exist_ok=True)
    with open(metadata_path, "w", encoding="utf-8") as f:
        json.dump(metadata, f, sort_keys=True, indent=2)

    # normalize the scene
    normalize_scene()

    # randomize the lighting
    randomize_lighting()

    # render the images
    for i in range(num_renders):
        # set camera
        camera = randomize_camera(
            only_northern_hemisphere=only_northern_hemisphere,
        )

        # render the image
        render_path = os.path.join(output_dir, f"{i:03d}.png")
        scene.render.filepath = render_path
        bpy.ops.render.render(write_still=True)

        # save camera RT matrix
        rt_matrix = get_3x4_RT_matrix_from_blender(camera)
        rt_matrix_path = os.path.join(output_dir, f"{i:03d}.npy")
        np.save(rt_matrix_path, rt_matrix)


if __name__ == "__main__":
    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--object_path",
        type=str,
        required=True,
        help="Path to the object file",
    )
    parser.add_argument(
        "--output_dir",
        type=str,
        required=True,
        help="Path to the directory where the rendered images and metadata will be saved.",
    )
    parser.add_argument(
        "--engine",
        type=str,
        default="BLENDER_EEVEE",
        choices=["CYCLES", "BLENDER_EEVEE"],
    )
    parser.add_argument(
        "--only_northern_hemisphere",
        action="store_true",
        help="Only render the northern hemisphere of the object.",
        default=False,
    )
    parser.add_argument(
        "--num_renders",
        type=int,
        default=12,
        help="Number of renders to save of the object.",
    )
    argv = sys.argv[sys.argv.index("--") + 1 :]
    args = parser.parse_args(argv)

    context = bpy.context
    scene = context.scene
    render = scene.render

    # Set render settings
    render.engine = args.engine
    render.image_settings.file_format = "PNG"
    render.image_settings.color_mode = "RGBA"
    render.resolution_x = 512
    render.resolution_y = 512
    render.resolution_percentage = 100

    # Set cycles settings
    scene.cycles.device = "GPU"
    scene.cycles.samples = 128
    scene.cycles.diffuse_bounces = 1
    scene.cycles.glossy_bounces = 1
    scene.cycles.transparent_max_bounces = 3
    scene.cycles.transmission_bounces = 3
    scene.cycles.filter_width = 0.01
    scene.cycles.use_denoising = True
    scene.render.film_transparent = True
    bpy.context.preferences.addons["cycles"].preferences.get_devices()
    bpy.context.preferences.addons[
        "cycles"
    ].preferences.compute_device_type = "CUDA"  # or "OPENCL"

    # Render the images
    render_object(
        object_file=args.object_path,
        num_renders=args.num_renders,
        only_northern_hemisphere=args.only_northern_hemisphere,
        output_dir=args.output_dir,
    )