|
|
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
_CITATION = """\ |
|
@inproceedings{Kumar2022IndicNLGSM, |
|
title={IndicNLG Suite: Multilingual Datasets for Diverse NLG Tasks in Indic Languages}, |
|
author={Aman Kumar and Himani Shrotriya and Prachi Sahu and Raj Dabre and Ratish Puduppully and Anoop Kunchukuttan and Amogh Mishra and Mitesh M. Khapra and Pratyush Kumar}, |
|
year={2022}, |
|
url = "https://arxiv.org/abs/2203.05437" |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
This is the sentence summarization dataset released as part of IndicNLG Suite. Each |
|
input sentence is paired with an output summary. We create this dataset in eleven |
|
languages including as, bn, gu, hi, kn, ml, mr, or, pa, ta and te. The total |
|
size of the dataset is 431K. |
|
""" |
|
_HOMEPAGE = "https://indicnlp.ai4bharat.org/indicnlg-suite" |
|
|
|
_LICENSE = "Creative Commons Attribution-NonCommercial 4.0 International Public License" |
|
|
|
_URL = "https://huggingface.co/datasets/ai4bharat/IndicSentenceSummarization/resolve/main/data/{}_IndicSentenceSummarization_v{}.zip" |
|
|
|
|
|
_LANGUAGES = [ |
|
"as", |
|
"bn", |
|
"gu", |
|
"hi", |
|
"kn", |
|
"ml", |
|
"mr", |
|
"or", |
|
"pa", |
|
"ta", |
|
"te" |
|
] |
|
|
|
|
|
class IndicSentenceSummarization(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig( |
|
name="{}".format(lang), |
|
version=datasets.Version("1.0.0") |
|
) |
|
for lang in _LANGUAGES |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id":datasets.Value("string"), |
|
"input": datasets.Value("string"), |
|
"target": datasets.Value("string"), |
|
"url":datasets.Value("string") |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE, |
|
version=self.VERSION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
lang = str(self.config.name) |
|
url = _URL.format(lang, self.VERSION.version_str[:-2]) |
|
|
|
data_dir = dl_manager.download_and_extract(url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir,"content",lang + "_train.jsonl"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir,"content",lang + "_test.jsonl"), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir,"content",lang + "_dev.jsonl"), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples as (key, example) tuples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
for idx_, row in enumerate(f): |
|
data = json.loads(row) |
|
yield idx_, { |
|
"id":data["id"], |
|
"input": data["Sentence"], |
|
"target": data["Summary"], |
|
"url":data["URL"] |
|
|
|
} |