File size: 1,952 Bytes
3bb44ea
4db1b50
 
 
 
 
3bb44ea
 
 
 
 
 
 
 
608ee09
 
 
5c6a724
 
 
 
 
381f8c8
 
 
5c6a724
 
 
 
 
 
 
 
 
 
 
 
 
608ee09
 
 
 
 
 
 
 
 
 
 
 
 
 
5c6a724
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
---
annotations_creators:
  - crowdsourced
language_creators:
  - crowdsourced
  - found
license: mit
task_categories:
- question-answering
language:
- ar
pretty_name: abdoelsayed/Open-ArabicaQA
size_categories:
- 10K<n<100K
---


# ArabicaQA
ArabicaQA: Comprehensive Dataset for Arabic Question Answering

This repository contains dataset for paper *ArabicaQA: Comprehensive Dataset for Arabic Question Answering*. Below, we provide details regarding the materials available in this repository:

ArabicaQA is a robust dataset designed to support and advance the development of Arabic Question Answering (QA) systems. This dataset encompasses a wide range of question types, including both Machine Reading Comprehension (MRC) and Open-Domain questions, catering to various aspects of QA research and application. The dataset is structured to facilitate training, validation, and testing of Arabic QA models.

For more detail https://github.com/DataScienceUIBK/ArabicaQA/tree/main

## Dataset

Within this folder, you will find the training, validation, and test sets of the ArabicaQA dataset. Refer to the table below for the dataset statistics:

|                    | Training | Validation | Test   |
| -------------------|----------|------------|--------|
| MRC (with answers) | 62,186   | 13,483     | 13,426 |
| MRC (unanswerable) | 2,596    | 561        | 544    |
| Open-Domain        | 62,057   | 13,475     | 13,414 |
| Open-Domain        | 58,528   | 12,541     | 12,541 |



## Citation

If you find these codes or data useful, please consider citing our paper as:

```
@misc{abdallah2024arabicaqa,
      title={ArabicaQA: A Comprehensive Dataset for Arabic Question Answering}, 
      author={Abdelrahman Abdallah and Mahmoud Kasem and Mahmoud Abdalla and Mohamed Mahmoud and Mohamed Elkasaby and Yasser Elbendary and Adam Jatowt},
      year={2024},
      eprint={2403.17848},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```