The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code: DatasetGenerationError Exception: TypeError Message: Couldn't cast array of type struct<acc,none: double, acc_stderr,none: double, acc_norm,none: double, acc_norm_stderr,none: double, alias: string> to {'acc,none': Value(dtype='float64', id=None)} Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2261, in cast_table_to_schema arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2261, in <listcomp> arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()] File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1802, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1802, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2020, in cast_array_to_feature arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()] File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2020, in <listcomp> arrays = [_c(array.field(name), subfeature) for name, subfeature in feature.items()] File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1804, in wrapper return func(array, *args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2122, in cast_array_to_feature raise TypeError(f"Couldn't cast array of type\n{_short_str(array.type)}\nto\n{_short_str(feature)}") TypeError: Couldn't cast array of type struct<acc,none: double, acc_stderr,none: double, acc_norm,none: double, acc_norm_stderr,none: double, alias: string> to {'acc,none': Value(dtype='float64', id=None)} The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1529, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1154, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2038, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
results
dict | config
dict |
---|---|
{
"medmcqa": {
"acc,none": 0.4566
},
"medqa_4options": {
"acc,none": 0.5145
},
"mmlu_anatomy": {
"acc,none": 0.5704
},
"mmlu_clinical_knowledge": {
"acc,none": 0.6453
},
"mmlu_college_biology": {
"acc,none": 0.6458
},
"mmlu_college_medicine": {
"acc,none": 0.6069
},
"mmlu_medical_genetics": {
"acc,none": 0.66
},
"mmlu_professional_medicine": {
"acc,none": 0.6544
},
"pubmedqa": {
"acc,none": 0.766
}
} | {
"model_dtype": "torch.float16",
"model_name": "HuggingFaceH4/zephyr-7b-beta",
"model_sha": "0e1799b1d2c43a97a442e14e53770e52ed3f198e"
} |
{
"pubmedqa": {
"acc,none": 0.746,
"acc_stderr,none": 0.019486596801643427,
"alias": "pubmedqa"
},
"mmlu_professional_medicine": {
"alias": "professional_medicine",
"acc,none": 0.6985294117647058,
"acc_stderr,none": 0.027875982114273168
},
"mmlu_medical_genetics": {
"alias": "medical_genetics",
"acc,none": 0.82,
"acc_stderr,none": 0.038612291966536955
},
"mmlu_college_medicine": {
"alias": "college_medicine",
"acc,none": 0.6011560693641619,
"acc_stderr,none": 0.037336266553835096
},
"mmlu_college_biology": {
"alias": "college_biology",
"acc,none": 0.7777777777777778,
"acc_stderr,none": 0.03476590104304134
},
"mmlu_clinical_knowledge": {
"alias": "clinical_knowledge",
"acc,none": 0.7547169811320755,
"acc_stderr,none": 0.02648035717989568
},
"mmlu_anatomy": {
"alias": "anatomy",
"acc,none": 0.6814814814814815,
"acc_stderr,none": 0.0402477840197711
},
"medqa_4options": {
"acc,none": 0.598586017282011,
"acc_stderr,none": 0.013744089558641807,
"acc_norm,none": 0.598586017282011,
"acc_norm_stderr,none": 0.013744089558641807,
"alias": "medqa_4options"
},
"medmcqa": {
"acc,none": 0.5766196509682047,
"acc_stderr,none": 0.007640434439423529,
"acc_norm,none": 0.5766196509682047,
"acc_norm_stderr,none": 0.007640434439423529,
"alias": "medmcqa"
}
} | {
"model": "hf",
"model_args": "pretrained=meta-llama/Meta-Llama-3-8B,revision=main,dtype=bfloat16",
"model_num_parameters": 8030261248,
"model_dtype": "bfloat16",
"model_revision": "main",
"model_sha": "main",
"batch_size": "auto",
"batch_sizes": [
16
],
"device": "cuda:1",
"use_cache": null,
"limit": null,
"bootstrap_iters": 100000,
"gen_kwargs": null,
"random_seed": 0,
"numpy_seed": 1234,
"torch_seed": 1234,
"fewshot_seed": 1234,
"model_name": "meta-llama/Meta-Llama-3-8B"
} |