Datasets:

Modalities:
Text
Libraries:
Datasets
License:
ukp-data-admin commited on
Commit
f8994af
1 Parent(s): 379b430

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +213 -0
README.md CHANGED
@@ -1,3 +1,216 @@
1
  ---
2
  license: cc-by-nc-3.0
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-nc-3.0
3
  ---
4
+ # Dataset Card for UKP ASPECT
5
+
6
+ ## Table of Contents
7
+ - [Table of Contents](#table-of-contents)
8
+ - [Dataset Description](#dataset-description)
9
+ - [Dataset Summary](#dataset-summary)
10
+ - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
11
+ - [Languages](#languages)
12
+ - [Dataset Structure](#dataset-structure)
13
+ - [Data Instances](#data-instances)
14
+ - [Data Fields](#data-fields)
15
+ - [Data Splits](#data-splits)
16
+ - [Dataset Creation](#dataset-creation)
17
+ - [Curation Rationale](#curation-rationale)
18
+ - [Source Data](#source-data)
19
+ - [Annotations](#annotations)
20
+ - [Personal and Sensitive Information](#personal-and-sensitive-information)
21
+ - [Additional Information](#additional-information)
22
+ - [Dataset Curators](#dataset-curators)
23
+ - [Licensing Information](#licensing-information)
24
+ - [Citation Information](#citation-information)
25
+ - [Contributions](#contributions)
26
+
27
+ ## Dataset Description
28
+
29
+ - **Homepage: https://tudatalib.ulb.tu-darmstadt.de/handle/tudatalib/1998**
30
+ - **Paper: https://aclanthology.org/P19-1054/**
31
+ - **Leaderboard: n/a**
32
+ - **Point of Contact: data\[at\]ukp.informatik.tu-darmstadt.de**
33
+ - **(http://www.ukp.tu-darmstadt.de/)**
34
+
35
+ ### Dataset Summary
36
+
37
+ The UKP ASPECT Corpus includes 3,595 sentence pairs over 28 controversial topics. The sentences were crawled from a large web crawl and identified as arguments for a given topic using the ArgumenText system. The sampling and matching of the sentence pairs is described in the paper. Then, the argument similarity annotation was done via crowdsourcing. Each crowd worker could choose from four annotation options (the exact guidelines are provided in the Appendix of the paper).
38
+
39
+ ### Supported Tasks and Leaderboards
40
+
41
+ This dataset supports the following tasks:
42
+
43
+ * Sentence pair classification
44
+ * Topic classification
45
+
46
+ ### Languages
47
+
48
+ English
49
+
50
+ ## Dataset Structure
51
+
52
+ ### Data Instances
53
+
54
+ Each instance consists of a topic, a pair of sentences, and an argument similarity label.
55
+
56
+ ```
57
+ {"3d printing";"This could greatly increase the quality of life of those currently living in less than ideal conditions.";"The advent and spread of new technologies, like that of 3D printing can transform our lives in many ways.";"DTORCD"}
58
+ ```
59
+
60
+ ### Data Fields
61
+
62
+ * topic: the topic keywords used to retrieve the documents
63
+ * sentence_1: the first sentence of the pair
64
+ * sentence_2: the second sentence of the pair
65
+ * label: the consolidated crowdsourced gold-standard annotation of the sentence pair (DTORCD, NS, SS, HS)
66
+ * Different Topic/Can’t decide (DTORCD): Either one or
67
+ both of the sentences belong to a topic different than
68
+ the given one, or you can’t understand one or both
69
+ sentences. If you choose this option, you need to very
70
+ briefly explain, why you chose it (e.g.“The second
71
+ sentence is not grammatical”, “The first sentence is
72
+ from a different topic” etc.).
73
+ * No Similarity (NS): The two arguments belong to the
74
+ same topic, but they don’t show any similarity, i.e.
75
+ they speak aboutcompletely different aspects of the topic
76
+ * Some Similarity (SS): The two arguments belong to the
77
+ same topic, showing semantic similarity on a few aspects,
78
+ but thecentral message is rather different, or one
79
+ argument is way less specific than the other
80
+ * High Similarity (HS): The two arguments belong to the
81
+ same topic, and they speak about the same aspect, e.g.
82
+ using different words
83
+
84
+
85
+ ### Data Splits
86
+
87
+ The dataset currently does not contain standard data splits.
88
+
89
+ ## Dataset Creation
90
+
91
+ ### Curation Rationale
92
+
93
+ This dataset contains sentence pairs annotated with argument similarity labels that can be used to evaluate argument clustering.
94
+
95
+ ### Source Data
96
+
97
+ #### Initial Data Collection and Normalization
98
+
99
+ The UKP ASPECT corpus consists of sentences which have been identified as arguments for given topics using the ArgumenText
100
+ system (Stab et al., 2018). The ArgumenText
101
+ system expects as input an arbitrary topic (query)
102
+ and searches a large web crawl for relevant documents.
103
+ Finally, it classifies all sentences contained
104
+ in the most relevant documents for a given query
105
+ into pro, con or non-arguments (with regard to the
106
+ given topic).
107
+
108
+ We picked 28 topics related to currently discussed issues from technology and society. To balance the selection of argument pairs with regard to their similarity, we applied a weak supervision
109
+ approach. For each of our 28 topics, we applied
110
+ a sampling strategy that picks randomly two pro
111
+ or con argument sentences at random, calculates
112
+ their similarity using the system by Misra et al.
113
+ (2016), and keeps pairs with a probability aiming to balance diversity across the entire similarity
114
+ scale. This was repeated until we reached 3,595
115
+ arguments pairs, about 130 pairs for each topic.
116
+
117
+ #### Who are the source language producers?
118
+
119
+ Unidentified contributors to the world wide web.
120
+
121
+ ### Annotations
122
+
123
+ #### Annotation process
124
+
125
+ The argument pairs were annotated on a range
126
+ of three degrees of similarity (no, some, and high
127
+ similarity) with the help of crowd workers on
128
+ the Amazon Mechanical Turk platform. To account for
129
+ unrelated pairs due to the sampling process,
130
+ crowd workers could choose a fourth option.
131
+ We collected seven assignments per pair
132
+ and used Multi-Annotator Competence Estimation
133
+ (MACE) with a threshold of 1.0 (Hovy et al.,
134
+ 2013) to consolidate votes into a gold standard.
135
+
136
+ #### Who are the annotators?
137
+
138
+ Crowd workers on Amazon Mechanical Turk
139
+
140
+ ### Personal and Sensitive Information
141
+
142
+ This dataset is fully anonymized.
143
+
144
+ ## Additional Information
145
+
146
+ You can download the data via:
147
+
148
+ ```
149
+ from datasets import load_dataset
150
+
151
+ dataset = load_dataset("UKPLab/UKP_ASPECT")
152
+ ```
153
+ Please find more information about the code and how the data was collected in the [paper](https://aclanthology.org/P19-1054/).
154
+
155
+ ### Dataset Curators
156
+
157
+ Curation is managed by our [data manager](https://www.informatik.tu-darmstadt.de/ukp/research_ukp/ukp_research_data_and_software/ukp_data_and_software.en.jsp) at UKP.
158
+
159
+ ### Licensing Information
160
+
161
+ [CC-by-NC 3.0](https://creativecommons.org/licenses/by-nc/3.0/)
162
+
163
+ ### Citation Information
164
+
165
+ Please cite this data using:
166
+
167
+ ```
168
+ @inproceedings{reimers2019classification,
169
+ title={Classification and Clustering of Arguments with Contextualized Word Embeddings},
170
+ author={Reimers, Nils and Schiller, Benjamin and Beck, Tilman and Daxenberger, Johannes and Stab, Christian and Gurevych, Iryna},
171
+ booktitle={Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics},
172
+ pages={567--578},
173
+ year={2019}
174
+ }
175
+ ```
176
+
177
+ ### Contributions
178
+
179
+ Thanks to [@buenalaune](https://github.com/buenalaune) for adding this dataset.
180
+
181
+ ## Tags
182
+
183
+ annotations_creators:
184
+ - crowdsourced
185
+
186
+ language:
187
+ - en
188
+
189
+ language_creators:
190
+ - found
191
+
192
+ license:
193
+ - cc-by-nc-3.0
194
+
195
+ multilinguality:
196
+ - monolingual
197
+
198
+ pretty_name: UKP ASPECT Corpus
199
+
200
+ size_categories:
201
+ - 1K<n<10K
202
+
203
+ source_datasets:
204
+ - original
205
+
206
+ tags:
207
+ - argument pair
208
+ - argument similarity
209
+
210
+ task_categories:
211
+ - text-classification
212
+
213
+ task_ids:
214
+ - topic-classification
215
+ - multi-input-text-classification
216
+ - semantic-similarity-classification