Datasets:

ArXiv:
License:
File size: 9,736 Bytes
59befff
 
 
 
 
 
134f75e
49934c7
 
134f75e
59befff
 
 
 
a806618
59befff
 
 
 
 
 
f101ff0
c788cd7
fc74400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31c0d64
 
fc74400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31c0d64
 
fc74400
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9962ca8
 
 
fc74400
 
 
 
 
 
 
 
 
 
 
 
 
9962ca8
 
 
fc74400
 
30c94e3
 
 
59befff
 
a806618
59befff
 
 
 
124863c
59befff
 
 
124863c
 
59befff
 
 
 
 
 
 
 
 
 
 
 
 
da62ebe
59befff
 
 
a806618
 
 
 
 
59befff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a806618
 
 
 
 
 
 
 
 
 
59befff
 
 
 
 
 
 
 
 
a806618
59befff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a806618
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59befff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a806618
 
 
 
 
 
59befff
 
 
a806618
f101ff0
 
59befff
a806618
 
 
 
 
 
 
59befff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a806618
59befff
 
a806618
59befff
 
 
 
 
 
a806618
da62ebe
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
---
annotations_creators:
- found
language_creators:
- expert-generated
- found
language:
- en
- zh
license:
- unknown
multilinguality:
- monolingual
size_categories:
- 1M<n<10M
source_datasets:
- original
task_categories:
- question-answering
task_ids:
- closed-domain-qa
pretty_name: MedDialog
paperswithcode_id: meddialog
dataset_info:
- config_name: en
  features:
  - name: file_name
    dtype: string
  - name: dialogue_id
    dtype: int32
  - name: dialogue_url
    dtype: string
  - name: dialogue_turns
    sequence:
    - name: speaker
      dtype:
        class_label:
          names:
            '0': Patient
            '1': Doctor
    - name: utterance
      dtype: string
  splits:
  - name: train
    num_bytes: 290274759
    num_examples: 229674
  download_size: 0
  dataset_size: 290274759
- config_name: zh
  features:
  - name: file_name
    dtype: string
  - name: dialogue_id
    dtype: int32
  - name: dialogue_url
    dtype: string
  - name: dialogue_turns
    sequence:
    - name: speaker
      dtype:
        class_label:
          names:
            '0': 病人
            '1': 医生
    - name: utterance
      dtype: string
  splits:
  - name: train
    num_bytes: 1092063621
    num_examples: 1921127
  download_size: 0
  dataset_size: 1092063621
- config_name: processed.en
  features:
  - name: description
    dtype: string
  - name: utterances
    sequence: string
  splits:
  - name: train
    num_bytes: 370745
    num_examples: 482
  - name: validation
    num_bytes: 52145
    num_examples: 60
  - name: test
    num_bytes: 46514
    num_examples: 61
  download_size: 524214
  dataset_size: 469404
- config_name: processed.zh
  features:
  - name: utterances
    sequence: string
  splits:
  - name: train
    num_bytes: 1571262099
    num_examples: 2725989
  - name: validation
    num_bytes: 197117565
    num_examples: 340748
  - name: test
    num_bytes: 196526738
    num_examples: 340754
  download_size: 2082354155
  dataset_size: 1964906402
config_names:
- en
- zh
---

# Dataset Card for MedDialog

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

[//]: # (- **Homepage:** )
- **Repository:** https://github.com/UCSD-AI4H/Medical-Dialogue-System
- **Paper:** [MedDialog: Two Large-scale Medical Dialogue Datasets](https://arxiv.org/abs/2004.03329)
[//]: # (- **Leaderboard:** )
[//]: # (- **Point of Contact:** )

### Dataset Summary

The MedDialog dataset (Chinese) contains conversations (in Chinese) between doctors and patients. It has 1.1 million dialogues and 4 million utterances. The data is continuously growing and more dialogues will be added. The raw dialogues are from haodf.com. All copyrights of the data belong to haodf.com.

The MedDialog dataset (English) contains conversations (in English) between doctors and patients. It has 0.26 million dialogues. The data is continuously growing and more dialogues will be added. The raw dialogues are from healthcaremagic.com and icliniq.com. All copyrights of the data belong to healthcaremagic.com and icliniq.com.

Directions for using the pre-trained model using BERT using PyTorch is available in the Homepage.


### Supported Tasks and Leaderboards

Closed domain qa

### Languages

Monolingual. The datasets are in English (EN) and Chinese (ZH)

## Dataset Structure

### Data Instances

There are 4 configurations:
- Raw data:
  - en
  - zh
- Processed data:
  - processed.en
  - processed.zh

#### en

Each consultation consists of the below:
- ID
- URL
- Description of patient’s medical condition
- Dialogue

The dataset is built from [icliniq.com](https://www.icliniq.com/), [healthcaremagic.com](https://www.healthcaremagic.com/), [healthtap.com](https://www.healthtap.com/) and all copyrights of the data belong to these websites.

#### zh

Each consultation consists of the below:
- ID
- URL
- Description of patient’s medical condition
- Dialogue
- (Optional) Diagnosis and suggestions.

The dataset is built from [Haodf.com](https://www.haodf.com/) and all copyrights of the data belong to [Haodf.com](https://www.haodf.com/).

One example for chinese is

```
{
{'dialogue_id': 2,
  'dialogue_turns': [{'speaker': '病人',
    'utterance': '孩子哭闹时,鸡鸡旁边会肿起,情绪平静时肿块会消失,去一个私人诊所看过,说是疝气.如果确定是疝气,是不是一定要手术治疗?我孩子只有1岁10月,自愈的可能性大吗?如果一定要手术,这么小的孩子风险大吗?术后的恢复困难吗?谢谢.'},
   {'speaker': '医生', 'utterance': '南方医的B超说得不清楚,可能是鞘膜积液,可到我医院复查一个B超。'}],
  'dialogue_url': 'https://www.haodf.com/doctorteam/flow_team_6477251152.htm',
  'file_name': '2020.txt'},
}
```

#### processed.en
```
{
  'description': 'throat a bit sore and want to get a good imune booster, especially in light of the virus. please advise. have not been in contact with nyone with the virus.',
  'utterances': [
    'patient: throat a bit sore and want to get a good imune booster, especially in light of the virus. please advise. have not been in contact with nyone with the virus.',
    "doctor: during this pandemic. throat pain can be from a strep throat infection (antibiotics needed), a cold or influenza or other virus, or from some other cause such as allergies or irritants. usually, a person sees the doctor (call first) if the sore throat is bothersome, recurrent, or doesn't go away quickly. covid-19 infections tend to have cough, whereas strep throat usually lacks cough but has more throat pain. (3/21/20)"
  ]
}
```

#### processed.zh
```
{
  'utterances': [
    '病人:强制性脊柱炎,晚上睡觉翻身时腰骶骨区域疼痛,其他身体任何部位均不疼痛。', 
    '医生:应该没有问题,但最好把图像上传看看。'
  ]
}
```

### Data Fields

For generating the QA only the below fields have been considered:
- ID : Consultatation Identifier (restarts for each file)
- URL: The url link of the extracted conversation
- Dialogue : The conversation between the doctor and the patient.

These are arranged as below in the prepared dataset. Each item will be represented with these parameters.

- "file_name": string - signifies the file from which the conversation was extracted
- "dialogue_id": int32 - the dialogue id
- "dialogue_url": string - url of the conversation
- "dialogue_turns": datasets.Sequence - sequence of dialogues between patient and the doctor.Consists ClassLabel(names=["病人", "医生"]), and "utterance"(string) for each turn. (ClassLable(names=["Patient", "Doctor"]) for english)

#### processed.en
- `description` (str): Description of the dialog.
- `utterances` (list of str): Dialog utterances between patient and doctor.

#### processed.zh
- `utterances` (list of str): Dialog utterances between patient and doctor.

### Data Splits

There are no data splits on the original raw data. The "train" split for each language contains:
- en: 229674 examples
- zh: 1921127 examples

For processed configurations, data is split into train, validation and test, with the following number of examples:

|              |   train | validation |   test |
|--------------|--------:|-----------:|-------:|
| processed.en |     482 |         60 |     61 |
| processed.zh | 2725989 |     340748 | 340754 |

## Dataset Creation

### Curation Rationale

Medical dialogue systems are promising in assisting in telemedicine to increase access to healthcare services, improve the quality of patient care, and reduce medical costs. 

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

Unknow.

### Citation Information
```
@article{chen2020meddiag,
  title={MedDialog: a large-scale medical dialogue dataset},
  author={Chen, Shu and Ju, Zeqian and Dong, Xiangyu and Fang, Hongchao and Wang, Sicheng and Yang, Yue and Zeng, Jiaqi and Zhang, Ruisi and Zhang, Ruoyu and Zhou, Meng and Zhu, Penghui and Xie, Pengtao},
  journal={arXiv preprint arXiv:2004.03329}, 
  year={2020}
}
```

### Contributions

Thanks to [@vrindaprabhu](https://github.com/vrindaprabhu) for adding this dataset.