Datasets:
Tasks:
Summarization
Modalities:
Text
Formats:
csv
Languages:
English
Size:
10K - 100K
ArXiv:
Tags:
patent-summarization
License:
File size: 6,244 Bytes
c2c50b0 e20f5bb c2c50b0 e20f5bb c2c50b0 e20f5bb c2c50b0 f5d7eea e20f5bb c2c50b0 e20f5bb c2c50b0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- n<1k
source_datasets:
- big_patent
task_categories:
- summarization
task_ids: []
paperswithcode_id: bigpatent
pretty_name: Big Patent Sample
tags:
- patent-summarization
---
# Sampled big_patent Dataset
This is a sampled big_patent dataset - sampled down for shorter fine-tunings.
The data is sampled with the aim of providing an even distribution across data lengths. The distribution is quite flat up until 1 million characters in length, making the dataset good for training on lengths up to 250,000 tokens.
# Dataset Card for Big Patent
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
- [Curation Rationale](#curation-rationale)
- [Source Data](#source-data)
- [Annotations](#annotations)
- [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
- [Social Impact of Dataset](#social-impact-of-dataset)
- [Discussion of Biases](#discussion-of-biases)
- [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
- [Dataset Curators](#dataset-curators)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Homepage:** [Big Patent](https://evasharma.github.io/bigpatent/)
- **Repository:**
- **Paper:** [BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization](https://arxiv.org/abs/1906.03741)
- **Leaderboard:**
- **Point of Contact:** [Lu Wang](mailto:[email protected])
### Dataset Summary
BIGPATENT, consisting of 1.3 million records of U.S. patent documents along with human written abstractive summaries.
Each US patent application is filed under a Cooperative Patent Classification (CPC) code.
There are nine such classification categories:
- a: Human Necessities
- b: Performing Operations; Transporting
- c: Chemistry; Metallurgy
- d: Textiles; Paper
- e: Fixed Constructions
- f: Mechanical Engineering; Lightning; Heating; Weapons; Blasting
- g: Physics
- h: Electricity
- y: General tagging of new or cross-sectional technology
Current defaults are 2.1.2 version (fix update to cased raw strings) and 'all' CPC codes:
```python
from datasets import load_dataset
ds = load_dataset("big_patent") # default is 'all' CPC codes
ds = load_dataset("big_patent", "all") # the same as above
ds = load_dataset("big_patent", "a") # only 'a' CPC codes
ds = load_dataset("big_patent", codes=["a", "b"])
```
To use 1.0.0 version (lower cased tokenized words), pass both parameters `codes` and `version`:
```python
ds = load_dataset("big_patent", codes="all", version="1.0.0")
ds = load_dataset("big_patent", codes="a", version="1.0.0")
ds = load_dataset("big_patent", codes=["a", "b"], version="1.0.0")
```
### Supported Tasks and Leaderboards
[More Information Needed]
### Languages
English
## Dataset Structure
### Data Instances
Each instance contains a pair of `description` and `abstract`. `description` is extracted from the Description section of the Patent while `abstract` is extracted from the Abstract section.
```
{
'description': 'FIELD OF THE INVENTION \n [0001] This invention relates to novel calcium phosphate-coated implantable medical devices and processes of making same. The unique calcium-phosphate coated implantable medical devices minimize...',
'abstract': 'This invention relates to novel calcium phosphate-coated implantable medical devices...'
}
```
### Data Fields
- `description`: detailed description of patent.
- `abstract`: Patent abastract.
### Data Splits
| | train | validation | test |
|:----|------------------:|-------------:|-------:|
| all | 1207222 | 67068 | 67072 |
| a | 174134 | 9674 | 9675 |
| b | 161520 | 8973 | 8974 |
| c | 101042 | 5613 | 5614 |
| d | 10164 | 565 | 565 |
| e | 34443 | 1914 | 1914 |
| f | 85568 | 4754 | 4754 |
| g | 258935 | 14385 | 14386 |
| h | 257019 | 14279 | 14279 |
| y | 124397 | 6911 | 6911 |
## Dataset Creation
### Curation Rationale
[More Information Needed]
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed]
#### Who are the source language producers?
[More Information Needed]
### Annotations
#### Annotation process
[More Information Needed]
#### Who are the annotators?
[More Information Needed]
### Personal and Sensitive Information
[More Information Needed]
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed]
### Discussion of Biases
[More Information Needed]
### Other Known Limitations
[More Information Needed]
## Additional Information
### Dataset Curators
[More Information Needed]
### Licensing Information
[More Information Needed]
### Citation Information
```bibtex
@article{DBLP:journals/corr/abs-1906-03741,
author = {Eva Sharma and
Chen Li and
Lu Wang},
title = {{BIGPATENT:} {A} Large-Scale Dataset for Abstractive and Coherent
Summarization},
journal = {CoRR},
volume = {abs/1906.03741},
year = {2019},
url = {http://arxiv.org/abs/1906.03741},
eprinttype = {arXiv},
eprint = {1906.03741},
timestamp = {Wed, 26 Jun 2019 07:14:58 +0200},
biburl = {https://dblp.org/rec/journals/corr/abs-1906-03741.bib},
bibsource = {dblp computer science bibliography, https://dblp.org}
}
```
### Contributions
Thanks to [@mattbui](https://github.com/mattbui) for adding this dataset. |