tsl_news / tsl_news.py
albertvillanova's picture
Remove deprecated tasks
a32034e verified
raw
history blame
4.35 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments
"""TODO: Add a description here."""
import csv
import datasets
logger = datasets.logging.get_logger(__name__)
# TODO: Add BibTeX citation
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@InProceedings{huggingface:dataset,
title = {A great new dataset},
author={huggingface, Inc.
},
year={2020}
}
"""
# TODO: Add description of the dataset here
# You can copy an official description
_DESCRIPTION = """\
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
"""
# TODO: Add a link to an official homepage for the dataset here
_HOMEPAGE = ""
# TODO: Add the licence for the dataset here if you can find it
_LICENSE = ""
# TODO: Add link to the official dataset URLs here
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
"train": "https://tidrael.github.io/tsl-news/train.csv",
"test": "https://tidrael.github.io/tsl-news/test.csv",
}
class TSLNewsConfig(datasets.BuilderConfig):
"""BuilderConfig for TSLNews."""
def __init__(self, **kwargs):
"""BuilderConfig for TSLNews.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(TSLNewsConfig, self).__init__(
version=datasets.Version("1.0.0", ""), **kwargs
)
class TSLNews(datasets.GeneratorBasedBuilder):
"""TODO: Tesla News with stock statistics and sentiment."""
BUILDER_CONFIGS = [
TSLNewsConfig(
name="plain_text",
description="Plain text",
)
]
def _info(self):
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"title": datasets.Value("string"),
"date": datasets.Value("string"),
"close": datasets.Value("float"),
"pct_change": datasets.Value("float"),
"label": datasets.features.ClassLabel(
names=["negative", "positive"]
),
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(_URLS)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": downloaded_files["train"]},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": downloaded_files["test"]},
),
]
def _generate_examples(self, filepath):
"""Generate TSLNews examples."""
logger.info("generating examples from = %s", filepath)
key = 0
label_mapping = {"negative": 0, "positive": 1}
with open(filepath, encoding="utf-8") as f:
for row in csv.DictReader(f):
label = label_mapping[row["label"]]
yield key, {
"title": row["title"],
"date": row["date"],
"close": float(row["close"]),
"pct_change": float(row["pct_change"]),
"label": label,
}
key += 1