Datasets:
Tasks:
Text Classification
Sub-tasks:
sentiment-classification
Languages:
English
Size:
1K<n<10K
License:
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# TODO: Address all TODOs and remove all explanatory comments | |
"""TODO: Add a description here.""" | |
import csv | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
# TODO: Add BibTeX citation | |
# Find for instance the citation on arxiv or on the dataset repo/website | |
_CITATION = """\ | |
@InProceedings{huggingface:dataset, | |
title = {A great new dataset}, | |
author={huggingface, Inc. | |
}, | |
year={2020} | |
} | |
""" | |
# TODO: Add description of the dataset here | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
This new dataset is designed to solve this great NLP task and is crafted with a lot of care. | |
""" | |
# TODO: Add a link to an official homepage for the dataset here | |
_HOMEPAGE = "" | |
# TODO: Add the licence for the dataset here if you can find it | |
_LICENSE = "" | |
# TODO: Add link to the official dataset URLs here | |
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files. | |
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method) | |
_URLS = { | |
"train": "https://tidrael.github.io/tsl-news/train.csv", | |
"test": "https://tidrael.github.io/tsl-news/test.csv", | |
} | |
class TSLNewsConfig(datasets.BuilderConfig): | |
"""BuilderConfig for TSLNews.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for TSLNews. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(TSLNewsConfig, self).__init__( | |
version=datasets.Version("1.0.0", ""), **kwargs | |
) | |
class TSLNews(datasets.GeneratorBasedBuilder): | |
"""TODO: Tesla News with stock statistics and sentiment.""" | |
BUILDER_CONFIGS = [ | |
TSLNewsConfig( | |
name="plain_text", | |
description="Plain text", | |
) | |
] | |
def _info(self): | |
# TODO: This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"title": datasets.Value("string"), | |
"date": datasets.Value("string"), | |
"close": datasets.Value("float"), | |
"pct_change": datasets.Value("float"), | |
"label": datasets.features.ClassLabel( | |
names=["negative", "positive"] | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
downloaded_files = dl_manager.download_and_extract(_URLS) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={"filepath": downloaded_files["train"]}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={"filepath": downloaded_files["test"]}, | |
), | |
] | |
def _generate_examples(self, filepath): | |
"""Generate TSLNews examples.""" | |
logger.info("generating examples from = %s", filepath) | |
key = 0 | |
label_mapping = {"negative": 0, "positive": 1} | |
with open(filepath, encoding="utf-8") as f: | |
for row in csv.DictReader(f): | |
label = label_mapping[row["label"]] | |
yield key, { | |
"title": row["title"], | |
"date": row["date"], | |
"close": float(row["close"]), | |
"pct_change": float(row["pct_change"]), | |
"label": label, | |
} | |
key += 1 | |