File size: 6,627 Bytes
ad814dd d803f17 ad814dd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- en
license:
- unknown
multilinguality:
- monolingual
pretty_name: Team-PIXEL/rendered-bookcorpus
size_categories:
- 1M<n<10M
source_datasets:
- rendered|BookCorpusOpen
task_categories:
- masked-auto-encoding
- rendered-language-modelling
task_ids:
- masked-auto-encoding
- rendered-language-modeling
paperswithcode_id: bookcorpus
---
# Dataset Card for Team-PIXEL/rendered-bookcorpus
## Dataset Description
- **Homepage:** [https://github.com/xplip/pixel](https://github.com/xplip/pixel)
- **Repository:** [https://github.com/xplip/pixel](https://github.com/xplip/pixel)
- **Papers:** [Aligning Books and Movies: Towards Story-like Visual Explanations by Watching Movies and Reading Books
](https://arxiv.org/abs/1506.06724), [Language Modelling with Pixels](https://arxiv.org/abs/2207.06991)
- **Point of Contact:** [Phillip Rust](mailto:[email protected])
- **Size of downloaded dataset files:** 63.58 GB
- **Size of the generated dataset:** 63.59 GB
- **Total amount of disk used:** 127.17 GB
### Dataset Summary
This dataset is a version of the BookCorpus available at [https://huggingface.co/datasets/bookcorpusopen](https://huggingface.co/datasets/bookcorpusopen) with examples rendered as images with resolution 16x8464 pixels.
The original BookCorpus was introduced by Zhu et al. (2015) in [Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books](https://arxiv.org/abs/1506.06724) and contains 17868 books of various genres. The rendered BookCorpus was used to train the [PIXEL](https://huggingface.co/Team-PIXEL/pixel-base) model introduced in the paper [Language Modelling with Pixels](https://arxiv.org/abs/2207.06991) by Phillip Rust, Jonas F. Lotz, Emanuele Bugliarello, Elizabeth Salesky, Miryam de Lhoneux, and Desmond Elliott.
The BookCorpusOpen dataset was rendered book-by-book into 5.4M examples containing approximately 1.1B words in total. The dataset is stored as a collection of 162 parquet files. It was rendered using the script openly available at [https://github.com/xplip/pixel/blob/main/scripts/data/prerendering/prerender_bookcorpus.py](https://github.com/xplip/pixel/blob/main/scripts/data/prerendering/prerender_bookcorpus.py). The text renderer uses a PyGame backend and a collection of merged Google Noto Sans fonts. The PyGame backend does not support complex text layouts (e.g. ligatures and right-to-left scripts) or emoji, so occurrences of such text in the BookCorpus have not been rendered accurately.
Each example consists of a "pixel_values" field which stores a 16x8464 (height, width) grayscale image containing the rendered text, and an integer value "num_patches" which stores how many image patches (when splitting the image into 529 non-overlapping patches of resolution 16x16 pixels) in the associated images contain actual text, i.e. are neither blank (fully white) nor are the fully black end-of-sequence patch.
## Dataset Structure
### Data Instances
- **Size of downloaded dataset files:** 63.58 GB
- **Size of the generated dataset:** 63.59 GB
- **Total amount of disk used:** 127.17 GB
An example of 'train' looks as follows.
```
{
"pixel_values": <PIL.PngImagePlugin.PngImageFile image mode=L size=8464x16
"num_patches": "498"
}
```
### Data Fields
The data fields are the same among all splits.
- `pixel_values`: an `Image` feature.
- `num_patches`: a `Value(dtype="int64")` feature.
### Data Splits
|train|
|:----|
|5400000|
## Dataset Creation
### Curation Rationale
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Source Data
#### Initial Data Collection and Normalization
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the source language producers?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Annotations
#### Annotation process
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
#### Who are the annotators?
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Personal and Sensitive Information
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Considerations for Using the Data
### Social Impact of Dataset
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Discussion of Biases
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Other Known Limitations
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
## Additional Information
### Dataset Curators
[More Information Needed](https://github.com/huggingface/datasets/blob/master/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
### Licensing Information
The books have been crawled from smashwords.com, see their [terms of service](https://www.smashwords.com/about/tos) for more information.
A data sheet for this dataset has also been created and published in [Addressing "Documentation Debt" in Machine Learning Research: A Retrospective Datasheet for BookCorpus](https://arxiv.org/abs/2105.05241)
### Citation Information
```bibtex
@InProceedings{Zhu_2015_ICCV,
title = {Aligning Books and Movies: Towards Story-Like Visual Explanations by Watching Movies and Reading Books},
author = {Zhu, Yukun and Kiros, Ryan and Zemel, Rich and Salakhutdinov, Ruslan and Urtasun, Raquel and Torralba, Antonio and Fidler, Sanja},
booktitle = {The IEEE International Conference on Computer Vision (ICCV)},
month = {December},
year = {2015}
}
```
```bibtex
@article{rust-etal-2022-pixel,
title={Language Modelling with Pixels},
author={Phillip Rust and Jonas F. Lotz and Emanuele Bugliarello and Elizabeth Salesky and Miryam de Lhoneux and Desmond Elliott},
journal={arXiv preprint},
year={2022},
url={https://arxiv.org/abs/2207.06991}
}
```
### Contact Person
This dataset was added by Phillip Rust.
Github: [@xplip](https://github.com/xplip)
Twitter: [@rust_phillip](https://twitter.com/rust_phillip) |