new antmaze generate and dataset
Browse files- antmaze-large-play-v2_easy_dataset.npy +3 -0
- antmaze-large-play-v2_hard_dataset.npy +3 -0
- antmaze-large-play-v2_medium_dataset.npy +3 -0
- antmaze-medium-play-v2_easy_dataset.npy +3 -0
- antmaze-medium-play-v2_hard_dataset.npy +3 -0
- antmaze-medium-play-v2_medium_dataset.npy +3 -0
- antmaze_dataset.py +196 -0
antmaze-large-play-v2_easy_dataset.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:497a8a3afc71b90710ee3e93622590798da21977a43a7eaa633605bd880053ce
|
3 |
+
size 43492523
|
antmaze-large-play-v2_hard_dataset.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74de0389013c8c1e2f3ae6dff24f58bf9899e41bee150a50de4f4010fede8178
|
3 |
+
size 23192290
|
antmaze-large-play-v2_medium_dataset.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d5519c42a95443d0b808953f17fbda577d0879f89e10eea7837292cba1f79db
|
3 |
+
size 27286784
|
antmaze-medium-play-v2_easy_dataset.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d92648c6e6cc7e3cb88a627bb4fe4aff11acc686d6f69cccd581b300b8d3ae8d
|
3 |
+
size 35364691
|
antmaze-medium-play-v2_hard_dataset.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e7e8befc64ed8acd747e067229f9a1ce2ecb4e3a70b5d83818f83e5198d4af3d
|
3 |
+
size 26610812
|
antmaze-medium-play-v2_medium_dataset.npy
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bf17c31fe55a9d65df0e6d89b5891269ffe69ae9b4929574224cfaf4575ea055
|
3 |
+
size 30656089
|
antmaze_dataset.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import os
|
3 |
+
import random
|
4 |
+
import uuid
|
5 |
+
from dataclasses import asdict, dataclass
|
6 |
+
from pathlib import Path
|
7 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
8 |
+
import pickle
|
9 |
+
import d4rl
|
10 |
+
import gym
|
11 |
+
import numpy as np
|
12 |
+
import pyrallis
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import torch.nn.functional as F
|
16 |
+
import wandb
|
17 |
+
from torch.distributions import Normal
|
18 |
+
from torch.optim.lr_scheduler import CosineAnnealingLR
|
19 |
+
|
20 |
+
@dataclass
|
21 |
+
class TrainConfig:
|
22 |
+
#############################
|
23 |
+
######### Experiment ########
|
24 |
+
#############################
|
25 |
+
env_1: str = "antmaze-medium-play-v2"
|
26 |
+
level: str = "hard"
|
27 |
+
|
28 |
+
def qlearning_dataset(env, dataset=None, terminate_on_end=False, **kwargs):
|
29 |
+
if dataset is None:
|
30 |
+
dataset = env.get_dataset(**kwargs)
|
31 |
+
|
32 |
+
init_obs_index = np.unique(np.concatenate((np.where(dataset['terminals'])[0][:-1] + 1, np.where(dataset['timeouts'])[0][:-1] + 1)))
|
33 |
+
init_obs_ = dataset['observations'][init_obs_index]
|
34 |
+
|
35 |
+
init_pos = []
|
36 |
+
init_pos_in_current_traj = dataset['observations'][0][:2]
|
37 |
+
for i in range(len(dataset['observations'])):
|
38 |
+
if i in init_obs_index:
|
39 |
+
init_pos_in_current_traj = dataset['observations'][i][:2]
|
40 |
+
init_pos.append(init_pos_in_current_traj)
|
41 |
+
init_pos = np.array(init_pos)
|
42 |
+
|
43 |
+
hardness = {'easy': 0.36, 'medium': 0.4, 'hard': 0.45}
|
44 |
+
obs = dataset['observations']
|
45 |
+
length = dataset['observations'].shape[0]
|
46 |
+
POSITIONS = obs[:,:2]
|
47 |
+
GOAL = dataset['infos/goal']
|
48 |
+
MINIMAL_POSITION = init_pos
|
49 |
+
# get maximal Euclidean distance
|
50 |
+
# MAX_EU_DIS = (GOAL - MINIMAL_POSITION)**2
|
51 |
+
MAX_EU_DIS = np.linalg.norm(GOAL - MINIMAL_POSITION, axis=1)
|
52 |
+
# DIS = ((POSITIONS - MINIMAL_POSITION)**2) / MAX_EU_DIS
|
53 |
+
DIS = np.linalg.norm(POSITIONS - MINIMAL_POSITION, axis=1) / MAX_EU_DIS
|
54 |
+
save_idx = np.random.random(size=length) > (DIS * hardness[config.level] * 10)
|
55 |
+
small_data = {}
|
56 |
+
for key in dataset.keys():
|
57 |
+
small_data[key] = dataset[key][save_idx]
|
58 |
+
dataset = small_data
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
N = dataset['rewards'].shape[0]
|
63 |
+
obs_ = []
|
64 |
+
next_obs_ = []
|
65 |
+
action_ = []
|
66 |
+
reward_ = []
|
67 |
+
done_ = []
|
68 |
+
timeout_ = []
|
69 |
+
task_horizon = []
|
70 |
+
|
71 |
+
# The newer version of the dataset adds an explicit
|
72 |
+
# timeouts field. Keep old method for backwards compatability.
|
73 |
+
use_timeouts = False
|
74 |
+
if 'timeouts' in dataset:
|
75 |
+
use_timeouts = True
|
76 |
+
|
77 |
+
episode_step = 0
|
78 |
+
for i in range(N-1):
|
79 |
+
obs = dataset['observations'][i].astype(np.float32)
|
80 |
+
new_obs = dataset['observations'][i+1].astype(np.float32)
|
81 |
+
action = dataset['actions'][i].astype(np.float32)
|
82 |
+
reward = dataset['rewards'][i].astype(np.float32)
|
83 |
+
done_bool = bool(dataset['terminals'][i])
|
84 |
+
timeout_bool = bool(dataset['timeouts'][i])
|
85 |
+
|
86 |
+
if use_timeouts:
|
87 |
+
final_timestep = dataset['timeouts'][i]
|
88 |
+
else:
|
89 |
+
final_timestep = (episode_step == env._max_episode_steps - 1)
|
90 |
+
if (not terminate_on_end) and final_timestep:
|
91 |
+
# Skip this transition and don't apply terminals on the last step of an episode
|
92 |
+
episode_step = 0
|
93 |
+
continue
|
94 |
+
if done_bool or final_timestep:
|
95 |
+
episode_step = 0
|
96 |
+
|
97 |
+
obs_.append(obs)
|
98 |
+
next_obs_.append(new_obs)
|
99 |
+
action_.append(action)
|
100 |
+
reward_.append(reward)
|
101 |
+
done_.append(done_bool)
|
102 |
+
timeout_.append(timeout_bool)
|
103 |
+
task_horizon.append(episode_step)
|
104 |
+
episode_step += 1
|
105 |
+
|
106 |
+
|
107 |
+
# add in return for each episode
|
108 |
+
return_list = [0]
|
109 |
+
length = [0]
|
110 |
+
for i in range(len(done_)):
|
111 |
+
return_list[-1] += reward_[i]
|
112 |
+
length[-1] += 1
|
113 |
+
if done_[i] or timeout_[i]:
|
114 |
+
return_list.append(0)
|
115 |
+
length.append(0)
|
116 |
+
|
117 |
+
count = 0
|
118 |
+
data_return_list = [0] * len(done_)
|
119 |
+
for i in range(len(done_)):
|
120 |
+
data_return_list[i] = return_list[count]
|
121 |
+
if done_[i] or timeout_[i]:
|
122 |
+
count +=1
|
123 |
+
|
124 |
+
data_return_list = env.get_normalized_score(np.array(data_return_list)) * 100.0
|
125 |
+
data_return_list = np.array(data_return_list)
|
126 |
+
|
127 |
+
|
128 |
+
epi_obs = []
|
129 |
+
epi_n_obs = []
|
130 |
+
epi_terminals = []
|
131 |
+
epi_rewards = []
|
132 |
+
epi_returns = []
|
133 |
+
epi_actions = []
|
134 |
+
obs = []
|
135 |
+
n_obs = []
|
136 |
+
terminals = []
|
137 |
+
rewards = []
|
138 |
+
actions = []
|
139 |
+
# task_horizon = []
|
140 |
+
task_step = 0
|
141 |
+
for i in range(len(done_)):
|
142 |
+
obs.append(obs_[i])
|
143 |
+
n_obs.append(next_obs_[i])
|
144 |
+
terminals.append(done_[i])
|
145 |
+
rewards.append(reward_[i])
|
146 |
+
actions.append(action_[i])
|
147 |
+
# task_horizon.append(task_step)
|
148 |
+
task_step += 1
|
149 |
+
if done_[i] or timeout_[i]:
|
150 |
+
epi_obs.append(np.array(obs))
|
151 |
+
epi_n_obs.append(np.array(n_obs))
|
152 |
+
epi_terminals.append(np.array(terminals))
|
153 |
+
epi_rewards.append(np.array(rewards))
|
154 |
+
epi_returns.append(data_return_list[i])
|
155 |
+
epi_actions.append(np.array(actions))
|
156 |
+
obs = []
|
157 |
+
n_obs = []
|
158 |
+
terminals = []
|
159 |
+
rewards = []
|
160 |
+
actions = []
|
161 |
+
task_step = 0
|
162 |
+
|
163 |
+
transition_ids = np.arange(len(obs_))
|
164 |
+
|
165 |
+
|
166 |
+
return {
|
167 |
+
'observations': np.array(obs_),
|
168 |
+
'actions': np.array(action_),
|
169 |
+
'next_observations': np.array(next_obs_),
|
170 |
+
'rewards': np.array(reward_),
|
171 |
+
'terminals': np.array(done_),
|
172 |
+
'timeouts': np.array(timeout_),
|
173 |
+
'init_states': np.array(init_obs_),
|
174 |
+
'transition_ids': transition_ids,
|
175 |
+
'returns': data_return_list,
|
176 |
+
'epi_obs': np.array(epi_obs, dtype=object),
|
177 |
+
'epi_n_obs': np.array(epi_n_obs, dtype=object),
|
178 |
+
'epi_terminals': np.array(epi_terminals, dtype=object),
|
179 |
+
'epi_rewards': np.array(epi_rewards, dtype=object),
|
180 |
+
'epi_returns': np.array(epi_returns, dtype=object),
|
181 |
+
'epi_actions': np.array(epi_actions, dtype=object),
|
182 |
+
'task_horizon':np.array(task_horizon, dtype=object),
|
183 |
+
}
|
184 |
+
|
185 |
+
|
186 |
+
if __name__ == "__main__":
|
187 |
+
config = pyrallis.parse(config_class=TrainConfig)
|
188 |
+
|
189 |
+
env = gym.make(config.env_1)
|
190 |
+
dataset = qlearning_dataset(env)
|
191 |
+
|
192 |
+
# save dataset as npy
|
193 |
+
with open(f'./{config.env_1}_{config.level}_dataset.npy', 'wb') as f:
|
194 |
+
pickle.dump(dataset, f)
|
195 |
+
|
196 |
+
|