|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import re |
|
from pathlib import Path |
|
from typing import Dict, List, Tuple |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_CITATION = """\ |
|
@article{nguyen2018vlsp, |
|
title={VLSP shared task: sentiment analysis}, |
|
author={Nguyen, Huyen TM and Nguyen, Hung V and Ngo, \ |
|
Quyen T and Vu, Luong X and Tran, Vu Mai and Ngo, Bach X and Le, Cuong A}, |
|
journal={Journal of Computer Science and Cybernetics}, |
|
volume={34}, |
|
number={4}, |
|
pages={295--310}, |
|
year={2018} |
|
} |
|
""" |
|
_DATASETNAME = "vlsp2016_sa" |
|
|
|
_DESCRIPTION = """\ |
|
The SA-VLSP2016 dataset were collected from three source sites which are tinhte.vn, \ |
|
vnexpress.net and Facebook, and used for the sentiment analysis task. The data consists \ |
|
of comments of technical articles on those sites. Each comment is given one of \ |
|
four labels: POS (positive), NEG (negative), NEU (neutral) and USELESS (filter-out). |
|
""" |
|
|
|
_HOMEPAGE = "https://vlsp.org.vn/resources-vlsp2016" |
|
_LANGUAGES = ["vie"] |
|
|
|
_LICENSE = Licenses.CC_BY_NC_SA_4_0.value |
|
_LOCAL = True |
|
|
|
_URLS = {} |
|
|
|
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] |
|
|
|
_SOURCE_VERSION = "1.0.0" |
|
|
|
_SEACROWD_VERSION = "2024.06.20" |
|
_TAGS = ["POS", "NEG", "NEU"] |
|
|
|
|
|
class VLSP2016SADataset(datasets.GeneratorBasedBuilder): |
|
"""The SA-VLSP2016 dataset, used for sentiment analysis, comprises comments from technical \ |
|
articles on tinhte.vn, vnexpress.net, and Facebook, each labeled as positive, negative, neutral, or filter-out.""" |
|
|
|
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION) |
|
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION) |
|
SEACROWD_SCHEMA_NAME = "text" |
|
|
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_source", |
|
version=SOURCE_VERSION, |
|
description=f"{_DATASETNAME} source schema", |
|
schema="source", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}", |
|
), |
|
SEACrowdConfig( |
|
name=f"{_DATASETNAME}_tokenized_seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
version=SEACROWD_VERSION, |
|
description=f"{_DATASETNAME} SEACrowd schema", |
|
schema=f"seacrowd_{SEACROWD_SCHEMA_NAME}", |
|
subset_id=f"{_DATASETNAME}_tokenized", |
|
), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self) -> datasets.DatasetInfo: |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"label": datasets.ClassLabel(names=_TAGS), |
|
} |
|
) |
|
|
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}": |
|
features = schemas.text_features(_TAGS) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
"""Returns SplitGenerators.""" |
|
if self.config.data_dir is None: |
|
raise ValueError("This is a local dataset. Please pass the data_dir kwarg to load_dataset.") |
|
else: |
|
data_dir = self.config.data_dir |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "SA2016-training_data"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "SA2016-TestData-Ans"), |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath: Path, split: str) -> Tuple[int, Dict]: |
|
if split == "dev": |
|
if self.config.schema in ["source", f"seacrowd_{self.SEACROWD_SCHEMA_NAME}"]: |
|
labelfile = "test_raw_ANS.txt" |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}_tokenized": |
|
labelfile = "test_tokenized_ANS.txt" |
|
|
|
with open(os.path.join(filepath, labelfile)) as file: |
|
data = file.read() |
|
|
|
pattern = re.compile("(?P<sentence>.+)\n(?P<label>(POS|NEG|NEU))\n") |
|
|
|
if self.config.schema in ["source", f"seacrowd_{self.SEACROWD_SCHEMA_NAME}", f"seacrowd_{self.SEACROWD_SCHEMA_NAME}_tokenized"]: |
|
for i, match in enumerate(pattern.finditer(data)): |
|
yield i, {"id": i, "text": match.group("sentence").replace("\xa0", " "), "label": match.group("label")} |
|
|
|
else: |
|
labeltext = {"POS": [], "NEG": [], "NEU": []} |
|
if self.config.schema in ["source", f"seacrowd_{self.SEACROWD_SCHEMA_NAME}"]: |
|
positive = "SA-training_positive.txt" |
|
negative = "SA-training_negative.txt" |
|
neutral = "SA-training_neutral.txt" |
|
elif self.config.schema == f"seacrowd_{self.SEACROWD_SCHEMA_NAME}_tokenized": |
|
positive = "train_positive_tokenized.txt" |
|
negative = "train_negative_tokenized.txt" |
|
neutral = "train_neutral_tokenized.txt" |
|
|
|
for labelsplit, labelfile in zip(labeltext.keys(), [positive, negative, neutral]): |
|
with open(os.path.join(filepath, labelfile)) as file: |
|
data = file.read() |
|
labeltext[labelsplit] = data.split("\n\n")[:-1] |
|
|
|
if self.config.schema in ["source", f"seacrowd_{self.SEACROWD_SCHEMA_NAME}", f"seacrowd_{self.SEACROWD_SCHEMA_NAME}_tokenized"]: |
|
idcounter = 0 |
|
for label, sentences in labeltext.items(): |
|
for sentence in sentences: |
|
yield idcounter, {"id": idcounter, "text": sentence, "label": label} |
|
idcounter = idcounter + 1 |
|
|