|
|
|
import json |
|
|
|
import datasets |
|
|
|
from seacrowd.utils import schemas |
|
from seacrowd.utils.configs import SEACrowdConfig |
|
from seacrowd.utils.constants import Licenses, Tasks |
|
|
|
_DATASETNAME = "iapp_squad" |
|
_CITATION = """\ |
|
@dataset |
|
{ |
|
kobkrit_viriyayudhakorn_2021_4539916, |
|
author = {Kobkrit Viriyayudhakorn and Charin Polpanumas}, |
|
title = {iapp_wiki_qa_squad}, |
|
month = feb, |
|
year = 2021, |
|
publisher = {Zenodo}, |
|
version = 1, |
|
doi = {10.5281/zenodo.4539916}, |
|
url = {https://doi.org/10.5281/zenodo.4539916} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
`iapp_wiki_qa_squad` is an extractive question answering dataset from Thai Wikipedia articles. |
|
It is adapted from [the original iapp-wiki-qa-dataset](https://github.com/iapp-technology/iapp-wiki-qa-dataset) |
|
to [SQuAD](https://rajpurkar.github.io/SQuAD-explorer/) format, resulting in |
|
5761/742/739 questions from 1529/191/192 articles. |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/iapp-technology/iapp-wiki-qa-dataset" |
|
_LICENSE = Licenses.MIT.value |
|
_HF_URL = " https://huggingface.co/datasets/iapp_wiki_qa_squad" |
|
_SUPPORTED_TASKS = [Tasks.QUESTION_ANSWERING] |
|
_LOCAL = False |
|
_LANGUAGES = ["tha"] |
|
_SOURCE_VERSION = "1.0.0" |
|
_SEACROWD_VERSION = "2024.06.20" |
|
|
|
_URLS = { |
|
"train": "https://raw.githubusercontent.com/iapp-technology/iapp-wiki-qa-dataset/main/squad_format/data/train.jsonl", |
|
"validation": "https://raw.githubusercontent.com/iapp-technology/iapp-wiki-qa-dataset/main/squad_format/data/valid.jsonl", |
|
"test": "https://raw.githubusercontent.com/iapp-technology/iapp-wiki-qa-dataset/main/squad_format/data/test.jsonl", |
|
} |
|
|
|
|
|
class IappWikiQASquadDataset(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
SEACrowdConfig(name=f"{_DATASETNAME}_source", version=datasets.Version(_SOURCE_VERSION), description=_DESCRIPTION, subset_id=f"{_DATASETNAME}", schema="source"), |
|
SEACrowdConfig(name=f"{_DATASETNAME}_seacrowd_qa", version=datasets.Version(_SEACROWD_VERSION), description=_DESCRIPTION, subset_id=f"{_DATASETNAME}", schema="seacrowd_qa"), |
|
] |
|
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source" |
|
|
|
def _info(self): |
|
if self.config.schema == "source": |
|
features = datasets.Features( |
|
{ |
|
"question_id": datasets.Value("string"), |
|
"article_id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
"answer_end": datasets.Value("int32"), |
|
} |
|
), |
|
} |
|
) |
|
elif self.config.schema == "seacrowd_qa": |
|
features = schemas.qa_features |
|
features["meta"] = { |
|
"answer_start": datasets.Value("int32"), |
|
"answer_end": datasets.Value("int32"), |
|
} |
|
return datasets.DatasetInfo(description=_DESCRIPTION, features=features, homepage=_HOMEPAGE, citation=_CITATION, license=_LICENSE) |
|
|
|
def _split_generators(self, dl_manager): |
|
file_paths = dl_manager.download_and_extract(_URLS) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": file_paths["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"filepath": file_paths["validation"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": file_paths["test"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""Yields examples.""" |
|
with open(filepath, encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
data = json.loads(row) |
|
if self.config.schema == "source": |
|
yield id_, { |
|
"question_id": data["question_id"], |
|
"article_id": data["article_id"], |
|
"title": data["title"], |
|
"context": data["context"], |
|
"question": data["question"], |
|
"answers": { |
|
"text": data["answers"]["text"], |
|
"answer_start": data["answers"]["answer_start"], |
|
"answer_end": data["answers"]["answer_end"], |
|
}, |
|
} |
|
elif self.config.schema == "seacrowd_qa": |
|
yield id_, { |
|
"id": id_, |
|
"question_id": data["question_id"], |
|
"document_id": data["article_id"], |
|
"question": data["question"], |
|
"type": "abstractive", |
|
"choices": [], |
|
"context": data["context"], |
|
"answer": data["answers"]["text"], |
|
"meta": {"answer_start": data["answers"]["answer_start"][0], "answer_end": data["answers"]["answer_end"][0]}, |
|
} |
|
|