RollingMuffin commited on
Commit
77f4c95
1 Parent(s): 454d09f

Create test_scripts.py

Browse files
Files changed (1) hide show
  1. test_scripts.py +107 -0
test_scripts.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Lyrics dataset parsed from Genius"""
16
+
17
+
18
+ import csv
19
+ import json
20
+ import os
21
+ import gzip
22
+
23
+ import datasets
24
+
25
+
26
+ _CITATION = """\
27
+ @InProceedings{huggingartists:dataset,
28
+ title = {Lyrics dataset},
29
+ author={Aleksey Korshuk
30
+ },
31
+ year={2021}
32
+ }
33
+ """
34
+
35
+
36
+ _DESCRIPTION = """\
37
+ This dataset is designed to generate lyrics with HuggingArtists.
38
+ """
39
+
40
+ # Add a link to an official homepage for the dataset here
41
+ _HOMEPAGE = "https://github.com/AlekseyKorshuk/huggingartists"
42
+
43
+ # Add the licence for the dataset here if you can find it
44
+ _LICENSE = "All rights belong to copyright holders"
45
+
46
+ _URL = "https://huggingface.co/datasets/AlekseyKorshuk/comedy-scripts/resolve/main/comedy-scripts.json"
47
+
48
+ # Name of the dataset
49
+ class LyricsDataset(datasets.GeneratorBasedBuilder):
50
+ """Lyrics dataset"""
51
+
52
+ VERSION = datasets.Version("1.0.0")
53
+
54
+ def _info(self):
55
+ # This method specifies the datasets.DatasetInfo object which contains informations and typings for the dataset
56
+ features = datasets.Features(
57
+ {
58
+ "text": datasets.Value("string"),
59
+ }
60
+ )
61
+ return datasets.DatasetInfo(
62
+ # This is the description that will appear on the datasets page.
63
+ description=_DESCRIPTION,
64
+ # This defines the different columns of the dataset and their types
65
+ features=features, # Here we define them above because they are different between the two configurations
66
+ # If there's a common (input, target) tuple from the features,
67
+ # specify them here. They'll be used if as_supervised=True in
68
+ # builder.as_dataset.
69
+ supervised_keys=None,
70
+ # Homepage of the dataset for documentation
71
+ homepage=_HOMEPAGE,
72
+ # License for the dataset if available
73
+ license=_LICENSE,
74
+ # Citation for the dataset
75
+ citation=_CITATION,
76
+ )
77
+
78
+ def _split_generators(self, dl_manager):
79
+ """Returns SplitGenerators."""
80
+ # This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
81
+ # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
82
+
83
+ # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLs
84
+ # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
85
+ # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
86
+
87
+ data_dir = dl_manager.download_and_extract(_URL)
88
+ return [
89
+ datasets.SplitGenerator(
90
+ name=datasets.Split.TRAIN,
91
+ # These kwargs will be passed to _generate_examples
92
+ gen_kwargs={
93
+ "filepath": data_dir,
94
+ "split": "train",
95
+ },
96
+ ),
97
+ ]
98
+
99
+
100
+ def _generate_examples(self, filepath, split):
101
+ """Yields examples as (key, example) tuples."""
102
+ # This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
103
+
104
+ with open(filepath, encoding="utf-8") as f:
105
+ data = json.load(f)
106
+ for id, pred in enumerate(data[split]):
107
+ yield id, {"text": pred}