import csv import os import datasets from tqdm import tqdm from .accents import ACCENTS from .release_stats import STATS _HOMEPAGE = "https://huggingface.co/datasets/RitchieP/VerbaLex_voice" _LICENSE = "https://choosealicense.com/licenses/apache-2.0/" _BASE_URL = "https://huggingface.co/datasets/RitchieP/VerbaLex_voice/resolve/main/" _AUDIO_URL = _BASE_URL + "audio/{accent}/{split}/{accent}_{split}.tar" _TRANSCRIPT_URL = _BASE_URL + "transcript/{accent}/{split}.tsv" _CITATION = """\ """ class VerbaLexVoiceConfig(datasets.BuilderConfig): def __init__(self, name, version, **kwargs): self.accent = kwargs.pop("accent", None) self.num_speakers = kwargs.pop("num_speakers", None) self.num_files = kwargs.pop("num_files", None) description = ( f"VerbaLex Voice english speech-to-text dataset in {self.accent} accent." ) super(VerbaLexVoiceConfig, self).__init__( name=name, version=datasets.Version(version), description=description, **kwargs, ) class VerbaLexVoiceDataset(datasets.GeneratorBasedBuilder): """ VerbaLex is a dataset containing different English accents from non-native English speakers. This dataset is created directly from the L2-Arctic dataset. """ BUILDER_CONFIGS = [ VerbaLexVoiceConfig( name=accent, version=STATS["version"], accent=ACCENTS[accent], num_speakers=accent_stats["numOfSpeaker"], num_files=accent_stats["numOfWavFiles"] ) for accent, accent_stats in STATS["accents"].items() ] DEFAULT_CONFIG_NAME = "all" def _info(self): return datasets.DatasetInfo( description=( "VerbaLex Voice is a speech dataset focusing on accented English speech." "It specifically targets speeches from speakers that is a non-native English speaker." ), features=datasets.Features( { "path": datasets.Value("string"), "accent": datasets.Value("string"), "sentence": datasets.Value("string"), "audio": datasets.Audio(sampling_rate=44_100) } ), supervised_keys=None, homepage=_HOMEPAGE, license=_LICENSE, citation=_CITATION ) def _split_generators(self, dl_manager): """Returns SplitGenerators""" accent = self.config.name splits = ("train", "test") audio_urls = {} for split in splits: audio_urls[split] = _AUDIO_URL.format(accent=accent, split=split) archive_paths = dl_manager.download(audio_urls) local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} meta_urls = {split: _TRANSCRIPT_URL.format(accent=accent, split=split) for split in splits} meta_paths = dl_manager.download_and_extract(meta_urls) split_names = { "train": datasets.Split.TRAIN, "test": datasets.Split.TEST } split_generators = [] for split in splits: split_generators.append( datasets.SplitGenerator( name=split_names.get(split, split), gen_kwargs={ "local_extracted_archive_paths": local_extracted_archive_paths.get(split), "archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)], "meta_path": meta_paths[split] } ) ) return split_generators def _generate_examples(self, local_extracted_archive_paths, archives, meta_path): data_fields = list(self._info().features.keys()) metadata = {} with open(meta_path, encoding="UTF-8") as f: reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) for row in tqdm(reader, desc="Reading metadata..."): if not row["path"].endswith(".wav"): row["path"] += ".wav" for field in data_fields: if field not in row: row[field] = "" metadata[row["path"]] = row for i, audio_archive in enumerate(archives): print(audio_archive) for path, file in audio_archive: _, filename = os.path.split(path) if filename in metadata: result = dict(metadata[filename]) path = os.path.join(local_extracted_archive_paths[i], path) if local_extracted_archive_paths else path result["audio"] = {"path": path, "bytes": file.read()} result["path"] = path yield path, result