|
import csv |
|
import os |
|
|
|
import datasets |
|
from tqdm import tqdm |
|
|
|
from VerbaLex_Voice.accents import ACCENTS |
|
from VerbaLex_Voice.release_stats import STATS |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/RitchieP/VerbaLex_voice" |
|
|
|
_LICENSE = "https://choosealicense.com/licenses/apache-2.0/" |
|
|
|
_BASE_URL = "https://huggingface.co/datasets/RitchieP/VerbaLex_voice/tree/main" |
|
|
|
_AUDIO_URL = _BASE_URL + "audio/{accent}/{split}/{accent}_{split}.tar" |
|
|
|
_TRANSCRIPT_URL = _BASE_URL + "transcript/{accent}/{split}.tsv" |
|
|
|
_CITATION = """\ |
|
""" |
|
|
|
|
|
class VerbaLexVoiceConfig(datasets.BuilderConfig): |
|
def __init__(self, name, version, **kwargs): |
|
self.accent = kwargs.pop("accent", None) |
|
self.num_speakers = kwargs.pop("num_speakers", None) |
|
self.num_files = kwargs.pop("num_clips", None) |
|
description = ( |
|
f"VerbaLex Voice english speech-to-text dataset in {self.accent} accent." |
|
) |
|
|
|
super(VerbaLexVoiceConfig, self).__init__( |
|
name=name, |
|
version=datasets.Version(version), |
|
description=description, |
|
**kwargs, |
|
) |
|
|
|
|
|
class VerbaLexVoiceDataset(datasets.GeneratorBasedBuilder): |
|
""" |
|
VerbaLex is a dataset containing different English accents from non-native English speakers. |
|
This dataset is created directly from the L2-Arctic dataset. |
|
""" |
|
BUILDER_CONFIGS = [ |
|
VerbaLexVoiceConfig( |
|
name=accent, |
|
version=STATS["version"], |
|
accent=ACCENTS[accent], |
|
num_speakers=accent_stats["numOfSpeaker"], |
|
num_files=accent_stats["numOfWavFiles"] |
|
) |
|
for accent, accent_stats in STATS["accents"].items() |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "all" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=( |
|
"VerbaLex Voice is a speech dataset focusing on accented English speech." |
|
"It specifically targets speeches from speakers that is a non-native English speaker." |
|
), |
|
features=datasets.Features( |
|
{ |
|
"path": datasets.Value("string"), |
|
"accent": datasets.Value("string"), |
|
"sentence": datasets.Value("string"), |
|
"audio": datasets.Audio(sampling_rate=44_100) |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators""" |
|
accent = self.config.name |
|
|
|
splits = ("train", "test") |
|
audio_urls = {} |
|
for split in splits: |
|
audio_urls[split] = _AUDIO_URL.format(accent=accent, split=split) |
|
archive_paths = dl_manager.download(audio_urls) |
|
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {} |
|
|
|
meta_urls = {split: _TRANSCRIPT_URL.format(accent=accent, split=split) for split in splits} |
|
meta_paths = dl_manager.download_and_extract(meta_urls) |
|
|
|
split_names = { |
|
"train": datasets.Split.TRAIN, |
|
"test": datasets.Split.TEST |
|
} |
|
split_generators = [] |
|
for split in splits: |
|
split_generators.append( |
|
datasets.SplitGenerator( |
|
name=split_names.get(split, split), |
|
gen_kwargs={ |
|
"local_extracted_archive_paths": local_extracted_archive_paths.get(split), |
|
"archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)], |
|
"meta_path": meta_paths[split] |
|
} |
|
) |
|
) |
|
|
|
return split_generators |
|
|
|
def _generate_examples(self, local_extracted_archive_paths, archives, meta_path): |
|
data_fields = list(self._info().features.keys()) |
|
metadata = {} |
|
with open(meta_path, encoding="UTF-8") as f: |
|
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) |
|
for row in tqdm(reader, desc="Reading metadata..."): |
|
if not row["path"].endswith(".wav"): |
|
row["path"] += ".wav" |
|
for field in data_fields: |
|
if field not in row: |
|
row[field] = "" |
|
metadata[row["path"]] = row |
|
|
|
for i, audio_archive in enumerate(archives): |
|
for path, file in audio_archive: |
|
_, filename = os.path.split(path) |
|
if filename in metadata: |
|
result = dict(metadata[filename]) |
|
path = os.path.join(local_extracted_archive_paths[i], |
|
path) if local_extracted_archive_paths else path |
|
result["audio"] = {"path": path, "bytes": file.read()} |
|
result["path"] = path |
|
yield path, result |
|
|