VerbaLex_voice / VerbaLex_voice.py
RitchieP's picture
Upload VerbaLex_voice.py
0e739cb verified
raw
history blame
4.96 kB
import csv
import os
import datasets
from tqdm import tqdm
from VerbaLex_Voice.accents import ACCENTS
from VerbaLex_Voice.release_stats import STATS
_HOMEPAGE = "https://huggingface.co/datasets/RitchieP/VerbaLex_voice"
_LICENSE = "https://choosealicense.com/licenses/apache-2.0/"
_BASE_URL = "https://huggingface.co/datasets/RitchieP/VerbaLex_voice/tree/main"
_AUDIO_URL = _BASE_URL + "audio/{accent}/{split}/{accent}_{split}.tar"
_TRANSCRIPT_URL = _BASE_URL + "transcript/{accent}/{split}.tsv"
_CITATION = """\
"""
class VerbaLexVoiceConfig(datasets.BuilderConfig):
def __init__(self, name, version, **kwargs):
self.accent = kwargs.pop("accent", None)
self.num_speakers = kwargs.pop("num_speakers", None)
self.num_files = kwargs.pop("num_clips", None)
description = (
f"VerbaLex Voice english speech-to-text dataset in {self.accent} accent."
)
super(VerbaLexVoiceConfig, self).__init__(
name=name,
version=datasets.Version(version),
description=description,
**kwargs,
)
class VerbaLexVoiceDataset(datasets.GeneratorBasedBuilder):
"""
VerbaLex is a dataset containing different English accents from non-native English speakers.
This dataset is created directly from the L2-Arctic dataset.
"""
BUILDER_CONFIGS = [
VerbaLexVoiceConfig(
name=accent,
version=STATS["version"],
accent=ACCENTS[accent],
num_speakers=accent_stats["numOfSpeaker"],
num_files=accent_stats["numOfWavFiles"]
)
for accent, accent_stats in STATS["accents"].items()
]
DEFAULT_CONFIG_NAME = "all"
def _info(self):
return datasets.DatasetInfo(
description=(
"VerbaLex Voice is a speech dataset focusing on accented English speech."
"It specifically targets speeches from speakers that is a non-native English speaker."
),
features=datasets.Features(
{
"path": datasets.Value("string"),
"accent": datasets.Value("string"),
"sentence": datasets.Value("string"),
"audio": datasets.Audio(sampling_rate=44_100)
}
),
supervised_keys=None,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators"""
accent = self.config.name
splits = ("train", "test")
audio_urls = {}
for split in splits:
audio_urls[split] = _AUDIO_URL.format(accent=accent, split=split)
archive_paths = dl_manager.download(audio_urls)
local_extracted_archive_paths = dl_manager.extract(archive_paths) if not dl_manager.is_streaming else {}
meta_urls = {split: _TRANSCRIPT_URL.format(accent=accent, split=split) for split in splits}
meta_paths = dl_manager.download_and_extract(meta_urls)
split_names = {
"train": datasets.Split.TRAIN,
"test": datasets.Split.TEST
}
split_generators = []
for split in splits:
split_generators.append(
datasets.SplitGenerator(
name=split_names.get(split, split),
gen_kwargs={
"local_extracted_archive_paths": local_extracted_archive_paths.get(split),
"archives": [dl_manager.iter_archive(path) for path in archive_paths.get(split)],
"meta_path": meta_paths[split]
}
)
)
return split_generators
def _generate_examples(self, local_extracted_archive_paths, archives, meta_path):
data_fields = list(self._info().features.keys())
metadata = {}
with open(meta_path, encoding="UTF-8") as f:
reader = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE)
for row in tqdm(reader, desc="Reading metadata..."):
if not row["path"].endswith(".wav"):
row["path"] += ".wav"
for field in data_fields:
if field not in row:
row[field] = ""
metadata[row["path"]] = row
for i, audio_archive in enumerate(archives):
for path, file in audio_archive:
_, filename = os.path.split(path)
if filename in metadata:
result = dict(metadata[filename])
path = os.path.join(local_extracted_archive_paths[i],
path) if local_extracted_archive_paths else path
result["audio"] = {"path": path, "bytes": file.read()}
result["path"] = path
yield path, result