import datasets _CITATION = """\ @InProceedings{huggingface:dataset, title = {Small htr examples images}, author={Gabriel Borg}, year={2023} } """ _DESCRIPTION = """\ Demo dataset for the htr demo. """ _HOMEPAGE = "https://github.com/Borg93/htr_gradio_file_placeholder" _LICENSE = "" _REPO = "https://huggingface.co/datasets/Riksarkivet/test_images_demo/resolve/main/images.tgz" _METADATA_URL = "https://raw.githubusercontent.com/Borg93/htr_gradio_file_placeholder/main/images.txt" class ExampleImages(datasets.GeneratorBasedBuilder): """Small sample of image-text pairs""" def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features( { 'text': datasets.Value("string"), 'image': datasets.Image(), } ), supervised_keys=None, homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): images_archive = dl_manager.download(_REPO) metadata_paths = dl_manager.download(_METADATA_URL) image_iters = dl_manager.iter_archive(images_archive) return [ datasets.SplitGenerator( name=datasets.Split.TRAIN, gen_kwargs={ "images": image_iters, "metadata_path": metadata_paths } ), ] def _generate_examples(self, images, metadata_path): """Generate images and text.""" with open(metadata_path, encoding="utf-8") as f: metadata_list = f.read().split("\n") dataset_rows = zip(images, metadata_list) for img_obj, meta_txt in dataset_rows: file_path, file_obj = img_obj yield file_path, { "image": {"path": file_path, "bytes": file_obj.read()}, "text": meta_txt, }