|
|
|
import json |
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_CITATION = """ |
|
bibtex |
|
@article{DBLP:journals/corr/abs-2107-07253, |
|
author = {Asier Guti{\'{e}}rrez{-}Fandi{\~{n}}o and |
|
Jordi Armengol{-}Estap{\'{e}} and |
|
Marc P{\`{a}}mies and |
|
Joan Llop{-}Palao and |
|
Joaqu{\'{\i}}n Silveira{-}Ocampo and |
|
Casimiro Pio Carrino and |
|
Aitor Gonzalez{-}Agirre and |
|
Carme Armentano{-}Oller and |
|
Carlos Rodr{\'{\i}}guez Penagos and |
|
Marta Villegas}, |
|
title = {Spanish Language Models}, |
|
journal = {CoRR}, |
|
volume = {abs/2107.07253}, |
|
year = {2021}, |
|
url = {https://arxiv.org/abs/2107.07253}, |
|
archivePrefix = {arXiv}, |
|
eprint = {2107.07253}, |
|
timestamp = {Wed, 21 Jul 2021 15:55:35 +0200}, |
|
biburl = {https://dblp.org/rec/journals/corr/abs-2107-07253.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
This dataset contains 6,247 contexts and 18,817 questions with their answers, 1 to 5 for each fragment. |
|
|
|
The sources of the contexts are: |
|
|
|
* Encyclopedic articles from [Wikipedia in Spanish](https://es.wikipedia.org/), used under [CC-by-sa licence](https://creativecommons.org/licenses/by-sa/3.0/legalcode). |
|
|
|
* News from [Wikinews in Spanish](https://es.wikinews.org/), used under [CC-by licence](https://creativecommons.org/licenses/by/2.5/). |
|
|
|
* Text from the Spanish corpus [AnCora](http://clic.ub.edu/corpus/en), which is a mix from diferent newswire and literature sources, used under [CC-by licence] (https://creativecommons.org/licenses/by/4.0/legalcode). |
|
|
|
This dataset can be used to build extractive-QA. |
|
""" |
|
|
|
_HOMEPAGE = """""" |
|
|
|
_URL = "https://huggingface.co/datasets/PlanTL-GOB-ES/SQAC/tree/main" |
|
_TRAINING_FILE = "train.json" |
|
_DEV_FILE = "dev.json" |
|
_TEST_FILE = "test.json" |
|
|
|
|
|
class SQACConfig(datasets.BuilderConfig): |
|
""" Builder config for the SQAC dataset """ |
|
|
|
def __init__(self, **kwargs): |
|
"""BuilderConfig for SQAC. |
|
Args: |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(SQACConfig, self).__init__(**kwargs) |
|
|
|
|
|
class SQAC(datasets.GeneratorBasedBuilder): |
|
"""SQAC Dataset.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
SQACConfig( |
|
name="SQAC", |
|
|
|
description="SQAC dataset", |
|
), |
|
] |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"id": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"context": datasets.Value("string"), |
|
"question": datasets.Value("string"), |
|
"answers": datasets.features.Sequence( |
|
{ |
|
"text": datasets.Value("string"), |
|
"answer_start": datasets.Value("int32"), |
|
} |
|
), |
|
} |
|
), |
|
|
|
|
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
urls_to_download = { |
|
"train": f"{_URL}{_TRAINING_FILE}", |
|
"dev": f"{_URL}{_DEV_FILE}", |
|
"test": f"{_URL}{_TEST_FILE}", |
|
} |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["dev"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logger.info("generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as f: |
|
sqac_data = json.load(f) |
|
for article in sqac_data["data"]: |
|
title = article.get("title", "").strip() |
|
for paragraph in article["paragraphs"]: |
|
context = paragraph["context"].strip() |
|
for qa in paragraph["qas"]: |
|
question = qa["question"].strip() |
|
id_ = qa["id"] |
|
|
|
answer_starts = [answer["answer_start"] for answer in qa["answers"]] |
|
answers = [answer["text"].strip() for answer in qa["answers"]] |
|
|
|
|
|
|
|
yield id_, { |
|
"title": title, |
|
"context": context, |
|
"question": question, |
|
"id": id_, |
|
"answers": { |
|
"answer_start": answer_starts, |
|
"text": answers, |
|
}, |
|
} |
|
|