parquet-converter commited on
Commit
b1eab1b
1 Parent(s): aa7ae31

Update parquet files

Browse files
train.jsonl → NumbersStation--NSText2SQL/json-train.parquet RENAMED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:cfd6aca050f5aae98a960d8c82ee1152c0ed4956790156ae101640f724c81146
3
- size 432924555
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8470b8067887903ba3f997c960e75384e73c785b4820a8aa8aa1f3232541916
3
+ size 110897327
README.md DELETED
@@ -1,298 +0,0 @@
1
- ---
2
- language:
3
- - en
4
- task_categories:
5
- - text2text-generation
6
- license:
7
- - other
8
- language_creators:
9
- - crowdsourced
10
- - expert-generated
11
- multilinguality:
12
- - multilingual
13
- tags:
14
- - text-to-sql
15
- size_categories:
16
- - 100K<n<1M
17
- pretty_name: NSText2SQL
18
- ---
19
- # Dataset Summary
20
-
21
- NSText2SQL dataset used to train [NSQL](https://huggingface.co/NumbersStation/nsql-6B) models. The data is curated from more than 20 different public sources across the web with permissable licenses (listed below). All of these datasets come with existing text-to-SQL pairs. We apply various data cleaning and pre-processing techniques including table schema augmentation, SQL cleaning, and instruction generation using existing LLMs. The resulting dataset contains around 290,000 samples of text-to-SQL pairs.
22
-
23
- For more information and code, please see [this repository](https://github.com/NumbersStationAI/NSQL).
24
-
25
- # How to use it
26
-
27
- ```python
28
- from datasets import load_dataset
29
-
30
- dataset = load_dataset("NumbersStation/NSText2SQL")
31
- ```
32
-
33
- # Dataset Structure
34
-
35
- ## Data Instances
36
-
37
- Each data instance in this dataset represents a text-to-SQL entry where the instruction has been formatted with the table schema and question. The output is the SQL in SQlite dialect.
38
-
39
- ## Data Fields
40
-
41
- - `instruction` (string): the instruction to generate SQL.
42
- - `output` (string): the ground truth SQL.
43
- - `source` (string): the source dataset of the sample.
44
-
45
- # Languages
46
-
47
- The language of the data is primarily English.
48
-
49
- # Source Data and Licensing Information
50
-
51
- NSText2SQL is sourced from repositories with various licenses. Any use of all or part of the data gathered in NSText2SQL must abide by the terms of the original licenses, including attribution clauses when relevant. We thank all authors who provided these datasets. We provide provenance information for each dataset below.
52
-
53
- | Datasets | License | Link |
54
- | ---------------------- | ------------ | -------------------------------------------------------------------------------------------------------------------- |
55
- | academic | Not Found | [https://github.com/jkkummerfeld/text2sql-data](https://github.com/jkkummerfeld/text2sql-data) |
56
- | advising | CC-BY-4.0 | [https://github.com/jkkummerfeld/text2sql-data](https://github.com/jkkummerfeld/text2sql-data) |
57
- | atis | Not Found | [https://github.com/jkkummerfeld/text2sql-data](https://github.com/jkkummerfeld/text2sql-data) |
58
- | restaurants | Not Found | [https://github.com/jkkummerfeld/text2sql-data](https://github.com/jkkummerfeld/text2sql-data) |
59
- | scholar | Not Found | [https://github.com/jkkummerfeld/text2sql-data](https://github.com/jkkummerfeld/text2sql-data) |
60
- | imdb | Not Found | [https://github.com/jkkummerfeld/text2sql-data](https://github.com/jkkummerfeld/text2sql-data) |
61
- | yelp | Not Found | [https://github.com/jkkummerfeld/text2sql-data](https://github.com/jkkummerfeld/text2sql-data) |
62
- | criteria2sql | Apache-2.0 | [https://github.com/xiaojingyu92/Criteria2SQL](https://github.com/xiaojingyu92/Criteria2SQL) |
63
- | css | CC-BY-4.0 | [https://huggingface.co/datasets/zhanghanchong/css](https://huggingface.co/datasets/zhanghanchong/css) |
64
- | eICU | CC-BY-4.0 | [https://github.com/glee4810/EHRSQL](https://github.com/glee4810/EHRSQL) |
65
- | mimic_iii | CC-BY-4.0 | [https://github.com/glee4810/EHRSQL](https://github.com/glee4810/EHRSQL) |
66
- | geonucleardata | CC-BY-SA-4.0 | [https://github.com/chiahsuan156/KaggleDBQA](https://github.com/chiahsuan156/KaggleDBQA) |
67
- | greatermanchestercrime | CC-BY-SA-4.0 | [https://github.com/chiahsuan156/KaggleDBQA](https://github.com/chiahsuan156/KaggleDBQA) |
68
- | studentmathscore | CC-BY-SA-4.0 | [https://github.com/chiahsuan156/KaggleDBQA](https://github.com/chiahsuan156/KaggleDBQA) |
69
- | thehistoryofbaseball | CC-BY-SA-4.0 | [https://github.com/chiahsuan156/KaggleDBQA](https://github.com/chiahsuan156/KaggleDBQA) |
70
- | uswildfires | CC-BY-SA-4.0 | [https://github.com/chiahsuan156/KaggleDBQA](https://github.com/chiahsuan156/KaggleDBQA) |
71
- | whatcdhiphop | CC-BY-SA-4.0 | [https://github.com/chiahsuan156/KaggleDBQA](https://github.com/chiahsuan156/KaggleDBQA) |
72
- | worldsoccerdatabase | CC-BY-SA-4.0 | [https://github.com/chiahsuan156/KaggleDBQA](https://github.com/chiahsuan156/KaggleDBQA) |
73
- | pesticide | CC-BY-SA-4.0 | [https://github.com/chiahsuan156/KaggleDBQA](https://github.com/chiahsuan156/KaggleDBQA) |
74
- | mimicsql_data | MIT | [https://github.com/wangpinggl/TREQS](https://github.com/wangpinggl/TREQS) |
75
- | nvbench | MIT | [https://github.com/TsinghuaDatabaseGroup/nvBench](https://github.com/TsinghuaDatabaseGroup/nvBench) |
76
- | sede | Apache-2.0 | [https://github.com/hirupert/sede](https://github.com/hirupert/sede) |
77
- | spider | CC-BY-SA-4.0 | [https://huggingface.co/datasets/spider](https://huggingface.co/datasets/spider) |
78
- | sql_create_context | CC-BY-4.0 | [https://huggingface.co/datasets/b-mc2/sql-create-context](https://huggingface.co/datasets/b-mc2/sql-create-context) |
79
- | squall | CC-BY-SA-4.0 | [https://github.com/tzshi/squall](https://github.com/tzshi/squall) |
80
- | wikisql | BSD 3-Clause | [https://github.com/salesforce/WikiSQL](https://github.com/salesforce/WikiSQL) |
81
-
82
- # Citing this work
83
-
84
- If you use this data in your work, please cite our work _and_ the appropriate original sources:
85
-
86
- To cite NSText2SQL, please use:
87
- ```TeX
88
- @software{numbersstation2023NSText2SQL,
89
- author = {Numbers Station Labs},
90
- title = {NSText2SQL: An Open Source Text-to-SQL Dataset for Foundation Model Training},
91
- month = {July},
92
- year = {2023},
93
- url = {https://github.com/NumbersStationAI/NSQL},
94
- }
95
- ```
96
-
97
- To cite dataset used in this work, please use:
98
-
99
- | Datasets | Cite |
100
- | ---------------------- | ---------------------------------------------------------------------------------------- |
101
- | academic | `\cite{data-advising,data-academic}` |
102
- | advising | `\cite{data-advising}` |
103
- | atis | `\cite{data-advising,data-atis-original,data-atis-geography-scholar}` |
104
- | restaurants | `\cite{data-advising,data-restaurants-logic,data-restaurants-original,data-restaurants}` |
105
- | scholar | `\cite{data-advising,data-atis-geography-scholar}` |
106
- | imdb | `\cite{data-advising,data-imdb-yelp}` |
107
- | yelp | `\cite{data-advising,data-imdb-yelp}` |
108
- | criteria2sql | `\cite{Criteria-to-SQL}` |
109
- | css | `\cite{zhang2023css}` |
110
- | eICU | `\cite{lee2022ehrsql}` |
111
- | mimic_iii | `\cite{lee2022ehrsql}` |
112
- | geonucleardata | `\cite{lee-2021-kaggle-dbqa}` |
113
- | greatermanchestercrime | `\cite{lee-2021-kaggle-dbqa}` |
114
- | studentmathscore | `\cite{lee-2021-kaggle-dbqa}` |
115
- | thehistoryofbaseball | `\cite{lee-2021-kaggle-dbqa}` |
116
- | uswildfires | `\cite{lee-2021-kaggle-dbqa}` |
117
- | whatcdhiphop | `\cite{lee-2021-kaggle-dbqa}` |
118
- | worldsoccerdatabase | `\cite{lee-2021-kaggle-dbqa}` |
119
- | pesticide | `\cite{lee-2021-kaggle-dbqa}` |
120
- | mimicsql_data | `\cite{wang2020text}` |
121
- | nvbench | `\cite{nvBench_SIGMOD21}` |
122
- | sede | `\cite{hazoom2021text}` |
123
- | spider | `\cite{data-spider}` |
124
- | sql_create_context | Not Found |
125
- | squall | `\cite{squall}` |
126
- | wikisql | `\cite{data-wikisql}` |
127
-
128
-
129
- ```TeX
130
- @InProceedings{data-advising,
131
- dataset = {Advising},
132
- author = {Catherine Finegan-Dollak, Jonathan K. Kummerfeld, Li Zhang, Karthik Ramanathan, Sesh Sadasivam, Rui Zhang, and Dragomir Radev},
133
- title = {Improving Text-to-SQL Evaluation Methodology},
134
- booktitle = {Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
135
- month = {July},
136
- year = {2018},
137
- location = {Melbourne, Victoria, Australia},
138
- pages = {351--360},
139
- url = {http://aclweb.org/anthology/P18-1033},
140
- }
141
-
142
- @InProceedings{data-imdb-yelp,
143
- dataset = {IMDB and Yelp},
144
- author = {Navid Yaghmazadeh, Yuepeng Wang, Isil Dillig, and Thomas Dillig},
145
- title = {SQLizer: Query Synthesis from Natural Language},
146
- booktitle = {International Conference on Object-Oriented Programming, Systems, Languages, and Applications, ACM},
147
- month = {October},
148
- year = {2017},
149
- pages = {63:1--63:26},
150
- url = {http://doi.org/10.1145/3133887},
151
- }
152
-
153
- @article{data-academic,
154
- dataset = {Academic},
155
- author = {Fei Li and H. V. Jagadish},
156
- title = {Constructing an Interactive Natural Language Interface for Relational Databases},
157
- journal = {Proceedings of the VLDB Endowment},
158
- volume = {8},
159
- number = {1},
160
- month = {September},
161
- year = {2014},
162
- pages = {73--84},
163
- url = {http://dx.doi.org/10.14778/2735461.2735468},
164
- }
165
-
166
- @InProceedings{data-atis-geography-scholar,
167
- dataset = {Scholar, and Updated ATIS and Geography},
168
- author = {Srinivasan Iyer, Ioannis Konstas, Alvin Cheung, Jayant Krishnamurthy, and Luke Zettlemoyer},
169
- title = {Learning a Neural Semantic Parser from User Feedback},
170
- booktitle = {Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)},
171
- year = {2017},
172
- pages = {963--973},
173
- location = {Vancouver, Canada},
174
- url = {http://www.aclweb.org/anthology/P17-1089},
175
- }
176
-
177
- @article{data-atis-original,
178
- dataset = {ATIS, original},
179
- author = {Deborah A. Dahl, Madeleine Bates, Michael Brown, William Fisher, Kate Hunicke-Smith, David Pallett, Christine Pao, Alexander Rudnicky, and Elizabeth Shriber},
180
- title = {{Expanding the scope of the ATIS task: The ATIS-3 corpus}},
181
- journal = {Proceedings of the workshop on Human Language Technology},
182
- year = {1994},
183
- pages = {43--48},
184
- url = {http://dl.acm.org/citation.cfm?id=1075823},
185
- }
186
-
187
- @inproceedings{data-restaurants-logic,
188
- author = {Lappoon R. Tang and Raymond J. Mooney},
189
- title = {Automated Construction of Database Interfaces: Intergrating Statistical and Relational Learning for Semantic Parsing},
190
- booktitle = {2000 Joint SIGDAT Conference on Empirical Methods in Natural Language Processing and Very Large Corpora},
191
- year = {2000},
192
- pages = {133--141},
193
- location = {Hong Kong, China},
194
- url = {http://www.aclweb.org/anthology/W00-1317},
195
- }
196
-
197
- @inproceedings{data-restaurants-original,
198
- author = {Ana-Maria Popescu, Oren Etzioni, and Henry Kautz},
199
- title = {Towards a Theory of Natural Language Interfaces to Databases},
200
- booktitle = {Proceedings of the 8th International Conference on Intelligent User Interfaces},
201
- year = {2003},
202
- location = {Miami, Florida, USA},
203
- pages = {149--157},
204
- url = {http://doi.acm.org/10.1145/604045.604070},
205
- }
206
-
207
- @inproceedings{data-restaurants,
208
- author = {Alessandra Giordani and Alessandro Moschitti},
209
- title = {Automatic Generation and Reranking of SQL-derived Answers to NL Questions},
210
- booktitle = {Proceedings of the Second International Conference on Trustworthy Eternal Systems via Evolving Software, Data and Knowledge},
211
- year = {2012},
212
- location = {Montpellier, France},
213
- pages = {59--76},
214
- url = {https://doi.org/10.1007/978-3-642-45260-4_5},
215
- }
216
-
217
- @InProceedings{data-spider,
218
- author = {Tao Yu, Rui Zhang, Kai Yang, Michihiro Yasunaga, Dongxu Wang, Zifan Li, James Ma, Irene Li, Qingning Yao, Shanelle Roman, Zilin Zhang, and Dragomir Radev},
219
- title = {Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task},
220
- booktitle = {Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing},
221
- year = {2018},
222
- location = {Brussels, Belgium},
223
- pages = {3911--3921},
224
- url = {http://aclweb.org/anthology/D18-1425},
225
- }
226
-
227
- @article{data-wikisql,
228
- author = {Victor Zhong, Caiming Xiong, and Richard Socher},
229
- title = {Seq2SQL: Generating Structured Queries from Natural Language using Reinforcement Learning},
230
- year = {2017},
231
- journal = {CoRR},
232
- volume = {abs/1709.00103},
233
- }
234
-
235
- @InProceedings{Criteria-to-SQL,
236
- author = {Yu, Xiaojing and Chen, Tianlong and Yu, Zhengjie and Li, Huiyu and Yang, Yang and Jiang, Xiaoqian and Jiang, Anxiao},
237
- title = {Dataset and Enhanced Model for Eligibility Criteria-to-SQL Semantic Parsing},
238
- booktitle = {Proceedings of The 12th Language Resources and Evaluation Conference},
239
- month = {May},
240
- year = {2020},
241
- address = {Marseille, France},
242
- publisher = {European Language Resources Association},
243
- pages = {5831--5839},
244
- }
245
-
246
- @misc{zhang2023css,
247
- title = {CSS: A Large-scale Cross-schema Chinese Text-to-SQL Medical Dataset},
248
- author = {Hanchong Zhang and Jieyu Li and Lu Chen and Ruisheng Cao and Yunyan Zhang and Yu Huang and Yefeng Zheng and Kai Yu},
249
- year = {2023},
250
- }
251
-
252
- @article{lee2022ehrsql,
253
- title = {EHRSQL: A Practical Text-to-SQL Benchmark for Electronic Health Records},
254
- author = {Lee, Gyubok and Hwang, Hyeonji and Bae, Seongsu and Kwon, Yeonsu and Shin, Woncheol and Yang, Seongjun and Seo, Minjoon and Kim, Jong-Yeup and Choi, Edward},
255
- journal = {Advances in Neural Information Processing Systems},
256
- volume = {35},
257
- pages = {15589--15601},
258
- year = {2022},
259
- }
260
-
261
- @inproceedings{lee-2021-kaggle-dbqa,
262
- title = {KaggleDBQA: Realistic Evaluation of Text-to-SQL Parsers},
263
- author = {Lee, Chia-Hsuan and Polozov, Oleksandr and Richardson, Matthew},
264
- booktitle = {Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers)},
265
- pages = {2261--2273},
266
- year = {2021},
267
- }
268
-
269
- @inproceedings{squall,
270
- title = {On the Potential of Lexico-logical Alignments for Semantic Parsing to {SQL} Queries},
271
- author = {Tianze Shi and Chen Zhao and Jordan Boyd-Graber and Hal {Daum\'{e} III} and Lillian Lee},
272
- booktitle = {Findings of EMNLP},
273
- year = {2020},
274
- }
275
-
276
- @article{hazoom2021text,
277
- title = {Text-to-SQL in the wild: a naturally-occurring dataset based on Stack exchange data},
278
- author = {Hazoom, Moshe and Malik, Vibhor and Bogin, Ben},
279
- journal = {arXiv preprint arXiv:2106.05006},
280
- year = {2021},
281
- }
282
-
283
- @inproceedings{wang2020text,
284
- title = {Text-to-SQL Generation for Question Answering on Electronic Medical Records},
285
- author = {Wang, Ping and Shi, Tian and Reddy, Chandan K},
286
- booktitle = {Proceedings of The Web Conference 2020},
287
- pages = {350--361},
288
- year = {2020},
289
- }
290
-
291
- @inproceedings{nvBench_SIGMOD21,
292
- title = {Synthesizing Natural Language to Visualization (NL2VIS) Benchmarks from NL2SQL Benchmarks},
293
- author = {Yuyu Luo and Nan Tang and Guoliang Li and Chengliang Chai and Wenbo Li and Xuedi Qin},
294
- booktitle = {Proceedings of the 2021 International Conference on Management of Data, {SIGMOD} Conference 2021, June 20–25, 2021, Virtual Event, China},
295
- publisher = {ACM},
296
- year = {2021},
297
- }
298
- ```