# coding=utf-8 # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # Lint as: python3 """BigPatent Dataset.""" import glob import gzip import json import os import datasets _HOMEPAGE = "https://evasharma.github.io/bigpatent/" _CITATION = """ @misc{sharma2019bigpatent, title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization}, author={Eva Sharma and Chen Li and Lu Wang}, year={2019}, eprint={1906.03741}, archivePrefix={arXiv}, primaryClass={cs.CL} } """ _DESCRIPTION = """ BIGPATENT, consisting of 1.3 million records of U.S. patent documents along with human written abstractive summaries. Each US patent application is filed under a Cooperative Patent Classification (CPC) code. There are nine such classification categories: A (Human Necessities), B (Performing Operations; Transporting), C (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions), F (Mechanical Engineering; Lightning; Heating; Weapons; Blasting), G (Physics), H (Electricity), and Y (General tagging of new or cross-sectional technology) There are two features: - description: detailed description of patent. - abstract: Patent abastract. """ _REPO = "https://huggingface.co/datasets/big_patent/resolve/main/data" _URLS = { "train": f"{_REPO}/train.zip", "validation": f"{_REPO}/val.zip", "test": f"{_REPO}/test.zip", } _DOCUMENT = "description" _SUMMARY = "abstract" _CPC_DESCRIPTION = { "a": "Human Necessities", "b": "Performing Operations; Transporting", "c": "Chemistry; Metallurgy", "d": "Textiles; Paper", "e": "Fixed Constructions", "f": "Mechanical Engineering; Lightning; Heating; Weapons; Blasting", "g": "Physics", "h": "Electricity", "y": "General tagging of new or cross-sectional technology", } # Available versions: # 1.0.0 lower cased tokenized words. # 2.0.0 cased raw strings. # 2.1.0 cased raw strings (fixed). # TODO Add raw string versions _VERSION = "1.0.0" class BigPatentConfig(datasets.BuilderConfig): """BuilderConfig for BigPatent.""" def __init__(self, *args, cpc_codes=None, **kwargs): """BuilderConfig for BigPatent. Args: cpc_codes: str, cpc_codes **kwargs: keyword arguments forwarded to super. """ super().__init__(*args, version=_VERSION, **kwargs) self.cpc_codes = cpc_codes class BigPatent(datasets.GeneratorBasedBuilder): """BigPatent datasets.""" BUILDER_CONFIGS = [ BigPatentConfig( cpc_codes=list(_CPC_DESCRIPTION), name="all", description="Patents under all categories.", ), ] + [ BigPatentConfig( # pylint:disable=g-complex-comprehension cpc_codes=[k], name=k, description=f"Patents under Cooperative Patent Classification (CPC) {k}: {v}", ) for k, v in sorted(_CPC_DESCRIPTION.items()) ] DEFAULT_CONFIG_NAME = "all" VERSION = _VERSION def _info(self): return datasets.DatasetInfo( description=_DESCRIPTION, features=datasets.Features({_DOCUMENT: datasets.Value("string"), _SUMMARY: datasets.Value("string")}), supervised_keys=(_DOCUMENT, _SUMMARY), homepage=_HOMEPAGE, citation=_CITATION, ) def _split_generators(self, dl_manager): """Returns SplitGenerators.""" dl_paths = dl_manager.download_and_extract(_URLS) split_dirs = {datasets.Split.TRAIN: "train", datasets.Split.VALIDATION: "val", datasets.Split.TEST: "test"} return [ datasets.SplitGenerator( name=split, gen_kwargs={"path": dl_paths[split], "split_dir": split_dirs[split]}, ) for split in split_dirs ] def _generate_examples(self, path=None, split_dir=None): """Yields examples.""" for cpc_code in self.config.cpc_codes: filenames = glob.glob(os.path.join(path, split_dir, cpc_code, "*")) for filename in sorted(filenames): with open(filename, "rb") as fin: fin = gzip.GzipFile(fileobj=fin) for row in fin: json_obj = json.loads(row) yield json_obj["publication_number"], { _DOCUMENT: json_obj[_DOCUMENT], _SUMMARY: json_obj[_SUMMARY], }