|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""BigPatent Dataset.""" |
|
import glob |
|
import gzip |
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@misc{sharma2019bigpatent, |
|
title={BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization}, |
|
author={Eva Sharma and Chen Li and Lu Wang}, |
|
year={2019}, |
|
eprint={1906.03741}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
BIGPATENT, consisting of 1.3 million records of U.S. patent documents |
|
along with human written abstractive summaries. |
|
Each US patent application is filed under a Cooperative Patent Classification |
|
(CPC) code. There are nine such classification categories: |
|
A (Human Necessities), B (Performing Operations; Transporting), |
|
C (Chemistry; Metallurgy), D (Textiles; Paper), E (Fixed Constructions), |
|
F (Mechanical Engineering; Lightning; Heating; Weapons; Blasting), |
|
G (Physics), H (Electricity), and |
|
Y (General tagging of new or cross-sectional technology) |
|
There are two features: |
|
- description: detailed description of patent. |
|
- abstract: Patent abastract. |
|
""" |
|
|
|
_URL = "https://drive.google.com/uc?export=download&id=1J3mucMFTWrgAYa3LuBZoLRR3CzzYD3fa" |
|
|
|
_DOCUMENT = "description" |
|
_SUMMARY = "abstract" |
|
|
|
_CPC_DESCRIPTION = { |
|
"a": "Human Necessities", |
|
"b": "Performing Operations; Transporting", |
|
"c": "Chemistry; Metallurgy", |
|
"d": "Textiles; Paper", |
|
"e": "Fixed Constructions", |
|
"f": "Mechanical Engineering; Lightning; Heating; Weapons; Blasting", |
|
"g": "Physics", |
|
"h": "Electricity", |
|
"y": "General tagging of new or cross-sectional technology", |
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_VERSION = "1.0.0" |
|
|
|
|
|
class BigPatentConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for BigPatent.""" |
|
|
|
def __init__(self, *args, cpc_codes=None, **kwargs): |
|
"""BuilderConfig for BigPatent. |
|
Args: |
|
cpc_codes: str, cpc_codes |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(*args, version=_VERSION, **kwargs) |
|
self.cpc_codes = cpc_codes |
|
|
|
|
|
class BigPatent(datasets.GeneratorBasedBuilder): |
|
"""BigPatent datasets.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
BigPatentConfig( |
|
cpc_codes=list(_CPC_DESCRIPTION), |
|
name="all", |
|
description="Patents under all categories.", |
|
), |
|
] + [ |
|
BigPatentConfig( |
|
cpc_codes=[k], |
|
name=k, |
|
description=(f"Patents under Cooperative Patent Classification (CPC)" "{k}: {v}"), |
|
) |
|
for k, v in sorted(_CPC_DESCRIPTION.items()) |
|
] |
|
DEFAULT_CONFIG_NAME = "all" |
|
VERSION = _VERSION |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({_DOCUMENT: datasets.Value("string"), _SUMMARY: datasets.Value("string")}), |
|
supervised_keys=(_DOCUMENT, _SUMMARY), |
|
homepage="https://evasharma.github.io/bigpatent/", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
dl_path = dl_manager.download_and_extract(_URL) |
|
split_types = ["train", "val", "test"] |
|
extract_paths = dl_manager.extract( |
|
{k: os.path.join(dl_path, "bigPatentData", k + ".tar.gz") for k in split_types} |
|
) |
|
extract_paths = {k: os.path.join(extract_paths[k], k) for k in split_types} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"path": extract_paths["train"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={"path": extract_paths["val"]}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"path": extract_paths["test"]}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, path=None): |
|
"""Yields examples.""" |
|
for cpc_code in self.config.cpc_codes: |
|
filenames = glob.glob(os.path.join(path, cpc_code, "*")) |
|
for filename in sorted(filenames): |
|
with open(filename, "rb") as fin: |
|
fin = gzip.GzipFile(fileobj=fin) |
|
for row in fin: |
|
json_obj = json.loads(row) |
|
yield json_obj["publication_number"], { |
|
_DOCUMENT: json_obj[_DOCUMENT], |
|
_SUMMARY: json_obj[_SUMMARY], |
|
} |
|
|