Datasets:

Languages:
English
ArXiv:
License:
File size: 9,702 Bytes
b8a7657
 
 
 
 
96be916
b8a7657
96be916
83b52d6
b8a7657
 
 
83b52d6
 
 
b8a7657
 
 
 
71c8445
dde56c8
e27d7d6
83b52d6
 
 
 
 
 
 
 
 
 
 
71c8445
 
231b4ba
 
 
 
 
 
 
 
 
30ea432
231b4ba
 
30ea432
231b4ba
f31a317
30ea432
f31a317
30ea432
 
231b4ba
 
 
 
 
 
 
 
30ea432
231b4ba
 
30ea432
231b4ba
f31a317
30ea432
f31a317
30ea432
 
231b4ba
 
 
 
 
 
 
 
30ea432
231b4ba
 
30ea432
231b4ba
f31a317
30ea432
f31a317
30ea432
 
231b4ba
 
 
 
 
 
 
 
30ea432
231b4ba
 
30ea432
231b4ba
f31a317
30ea432
f31a317
30ea432
 
231b4ba
 
 
 
 
 
 
 
30ea432
231b4ba
 
30ea432
231b4ba
f31a317
30ea432
f31a317
30ea432
 
231b4ba
 
 
 
 
 
 
 
30ea432
231b4ba
 
30ea432
231b4ba
f31a317
30ea432
f31a317
30ea432
 
231b4ba
 
 
 
 
 
 
 
30ea432
231b4ba
 
30ea432
231b4ba
f31a317
30ea432
f31a317
30ea432
 
231b4ba
 
 
 
 
 
 
 
30ea432
231b4ba
 
30ea432
231b4ba
f31a317
30ea432
f31a317
30ea432
 
231b4ba
 
 
 
 
 
 
 
30ea432
231b4ba
 
30ea432
231b4ba
f31a317
30ea432
f31a317
30ea432
 
231b4ba
 
 
 
 
 
 
 
30ea432
231b4ba
 
30ea432
231b4ba
f31a317
30ea432
f31a317
30ea432
 
b8a7657
 
 
 
 
dde56c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a7657
 
 
ec680de
b8a7657
ec680de
b8a7657
e5fa911
b8a7657
 
 
a815ad4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b8a7657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a815ad4
 
 
 
 
 
b8a7657
 
 
 
 
 
 
 
e27d7d6
 
 
 
 
 
 
 
 
 
 
 
b8a7657
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e27d7d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bbccbdd
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
---
annotations_creators:
- no-annotation
language_creators:
- found
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
size_categories:
- 100K<n<1M
- 10K<n<100K
- 1M<n<10M
source_datasets:
- original
task_categories:
- summarization
task_ids: []
paperswithcode_id: bigpatent
pretty_name: Big Patent
configs:
- a
- all
- b
- c
- d
- e
- f
- g
- h
- y
tags:
- patent-summarization
dataset_info:
- config_name: all
  features:
  - name: description
    dtype: string
  - name: abstract
    dtype: string
  splits:
  - name: train
    num_bytes: 38367048389
    num_examples: 1207222
  - name: validation
    num_bytes: 2115827002
    num_examples: 67068
  - name: test
    num_bytes: 2129505280
    num_examples: 67072
  download_size: 10142923776
  dataset_size: 42612380671
- config_name: a
  features:
  - name: description
    dtype: string
  - name: abstract
    dtype: string
  splits:
  - name: train
    num_bytes: 5683460620
    num_examples: 174134
  - name: validation
    num_bytes: 313324505
    num_examples: 9674
  - name: test
    num_bytes: 316633277
    num_examples: 9675
  download_size: 10142923776
  dataset_size: 6313418402
- config_name: b
  features:
  - name: description
    dtype: string
  - name: abstract
    dtype: string
  splits:
  - name: train
    num_bytes: 4236070976
    num_examples: 161520
  - name: validation
    num_bytes: 234425138
    num_examples: 8973
  - name: test
    num_bytes: 231538734
    num_examples: 8974
  download_size: 10142923776
  dataset_size: 4702034848
- config_name: c
  features:
  - name: description
    dtype: string
  - name: abstract
    dtype: string
  splits:
  - name: train
    num_bytes: 4506249306
    num_examples: 101042
  - name: validation
    num_bytes: 244684775
    num_examples: 5613
  - name: test
    num_bytes: 252566793
    num_examples: 5614
  download_size: 10142923776
  dataset_size: 5003500874
- config_name: d
  features:
  - name: description
    dtype: string
  - name: abstract
    dtype: string
  splits:
  - name: train
    num_bytes: 264717412
    num_examples: 10164
  - name: validation
    num_bytes: 14560482
    num_examples: 565
  - name: test
    num_bytes: 14403430
    num_examples: 565
  download_size: 10142923776
  dataset_size: 293681324
- config_name: e
  features:
  - name: description
    dtype: string
  - name: abstract
    dtype: string
  splits:
  - name: train
    num_bytes: 881101433
    num_examples: 34443
  - name: validation
    num_bytes: 48646158
    num_examples: 1914
  - name: test
    num_bytes: 48586429
    num_examples: 1914
  download_size: 10142923776
  dataset_size: 978334020
- config_name: f
  features:
  - name: description
    dtype: string
  - name: abstract
    dtype: string
  splits:
  - name: train
    num_bytes: 2146383473
    num_examples: 85568
  - name: validation
    num_bytes: 119632631
    num_examples: 4754
  - name: test
    num_bytes: 119596303
    num_examples: 4754
  download_size: 10142923776
  dataset_size: 2385612407
- config_name: g
  features:
  - name: description
    dtype: string
  - name: abstract
    dtype: string
  splits:
  - name: train
    num_bytes: 8877854206
    num_examples: 258935
  - name: validation
    num_bytes: 492581177
    num_examples: 14385
  - name: test
    num_bytes: 496324853
    num_examples: 14386
  download_size: 10142923776
  dataset_size: 9866760236
- config_name: h
  features:
  - name: description
    dtype: string
  - name: abstract
    dtype: string
  splits:
  - name: train
    num_bytes: 8075621958
    num_examples: 257019
  - name: validation
    num_bytes: 447602356
    num_examples: 14279
  - name: test
    num_bytes: 445460513
    num_examples: 14279
  download_size: 10142923776
  dataset_size: 8968684827
- config_name: y
  features:
  - name: description
    dtype: string
  - name: abstract
    dtype: string
  splits:
  - name: train
    num_bytes: 3695589005
    num_examples: 124397
  - name: validation
    num_bytes: 200369780
    num_examples: 6911
  - name: test
    num_bytes: 204394948
    num_examples: 6911
  download_size: 10142923776
  dataset_size: 4100353733
---

# Dataset Card for Big Patent

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [Big Patent](https://evasharma.github.io/bigpatent/)
- **Repository:**
- **Paper:** [BIGPATENT: A Large-Scale Dataset for Abstractive and Coherent Summarization](https://arxiv.org/abs/1906.03741)
- **Leaderboard:**
- **Point of Contact:** [Lu Wang](mailto:[email protected])

### Dataset Summary

BIGPATENT, consisting of 1.3 million records of U.S. patent documents along with human written abstractive summaries.
Each US patent application is filed under a Cooperative Patent Classification (CPC) code.
There are nine such classification categories:
- a: Human Necessities
- b: Performing Operations; Transporting
- c: Chemistry; Metallurgy
- d: Textiles; Paper
- e: Fixed Constructions
- f: Mechanical Engineering; Lightning; Heating; Weapons; Blasting
- g: Physics
- h: Electricity
- y: General tagging of new or cross-sectional technology

Current defaults are 2.1.2 version (fix update to cased raw strings) and 'all' CPC codes:
```python
from datasets import load_dataset

ds = load_dataset("big_patent")  # default is 'all' CPC codes
ds = load_dataset("big_patent", "all")  # the same as above
ds = load_dataset("big_patent", "a")  # only 'a' CPC codes
ds = load_dataset("big_patent", codes=["a", "b"])
```

To use 1.0.0 version (lower cased tokenized words), pass both parameters `codes` and `version`:
```python
ds = load_dataset("big_patent", codes="all", version="1.0.0")
ds = load_dataset("big_patent", codes="a", version="1.0.0")
ds = load_dataset("big_patent", codes=["a", "b"], version="1.0.0")
```


### Supported Tasks and Leaderboards

[More Information Needed]

### Languages

English

## Dataset Structure

### Data Instances

Each instance contains a pair of `description` and `abstract`. `description` is extracted from the Description section of the Patent while `abstract` is extracted from the Abstract section.
```
{
  'description': 'FIELD OF THE INVENTION  \n       [0001]     This invention relates to novel calcium phosphate-coated implantable medical devices and processes of making same. The unique calcium-phosphate coated implantable medical devices minimize...',
  'abstract': 'This invention relates to novel calcium phosphate-coated implantable medical devices...'
}
```

### Data Fields

- `description`: detailed description of patent.
- `abstract`: Patent abastract.

### Data Splits

|     |             train |   validation |   test |
|:----|------------------:|-------------:|-------:|
| all | 1207222           |        67068 |  67072 |
| a   |  174134           |         9674 |   9675 |
| b   |  161520           |         8973 |   8974 |
| c   |  101042           |         5613 |   5614 |
| d   |   10164           |          565 |    565 |
| e   |   34443           |         1914 |   1914 |
| f   |   85568           |         4754 |   4754 |
| g   |  258935           |        14385 |  14386 |
| h   |  257019           |        14279 |  14279 |
| y   |  124397           |         6911 |   6911 |

## Dataset Creation

### Curation Rationale

[More Information Needed]

### Source Data

#### Initial Data Collection and Normalization

[More Information Needed]

#### Who are the source language producers?

[More Information Needed]

### Annotations

#### Annotation process

[More Information Needed]

#### Who are the annotators?

[More Information Needed]

### Personal and Sensitive Information

[More Information Needed]

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[More Information Needed]

## Additional Information

### Dataset Curators

[More Information Needed]

### Licensing Information

[More Information Needed]

### Citation Information

```bibtex
@article{DBLP:journals/corr/abs-1906-03741,
  author    = {Eva Sharma and
               Chen Li and
               Lu Wang},
  title     = {{BIGPATENT:} {A} Large-Scale Dataset for Abstractive and Coherent
               Summarization},
  journal   = {CoRR},
  volume    = {abs/1906.03741},
  year      = {2019},
  url       = {http://arxiv.org/abs/1906.03741},
  eprinttype = {arXiv},
  eprint    = {1906.03741},
  timestamp = {Wed, 26 Jun 2019 07:14:58 +0200},
  biburl    = {https://dblp.org/rec/journals/corr/abs-1906-03741.bib},
  bibsource = {dblp computer science bibliography, https://dblp.org}
}
```

### Contributions

Thanks to [@mattbui](https://github.com/mattbui) for adding this dataset.