File size: 7,070 Bytes
21dd69d
 
 
 
 
44158bb
 
21dd69d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee1c23c
21dd69d
353d376
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21dd69d
551d8ef
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4020fd7
551d8ef
4020fd7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21dd69d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ee1c23c
 
21dd69d
ee1c23c
21dd69d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
---
tags:
- ASAG
- Grading
pretty_name: ASAG2024
size_categories:
- 10K<n<100K
---

# Dataset Card for ASAG2024

<!-- Provide a quick summary of the dataset. -->

This is the combined ASAG2024 dataset which consists of various automated grading datasets containing questions, reference answers, provided (student) answers and human grades. 

## Dataset Details

### Dataset Description

<!-- Provide a longer summary of what this dataset is. -->

- **Curated by:** Gérôme Meyer
- **Language(s) (NLP):** English
- **License:** Data Source Licenses apply (see below)

### Dataset Sources

This dataset was collected from the sources listed below. If you use this in your work, please make sure to cite the original authors. 

#### Stita
Repository: https://github.com/edgresearch/dataset-automaticgrading-2022/tree/master

Citation: 
```
del Gobbo, E., Guarino, A., Cafarelli, B. et al. GradeAid: a framework for automatic short answers grading in educational contexts—design, implementation and evaluation. _Knowl Inf Syst_ 65, 4295–4334 (2023). https://doi.org/10.1007/s10115-023-01892-9
```

BibTex: 
```
@Article{delGobbo2023,
  author={del Gobbo, Emiliano
  and Guarino, Alfonso
  and Cafarelli, Barbara
  and Grilli, Luca},
  title={GradeAid: a framework for automatic short answers grading in educational contexts---design, implementation and evaluation},
  journal={Knowledge and Information Systems},
  year={2023},
  month={Oct},
  day={01},
  volume={65},
  number={10},
  pages={4295-4334},
  issn={0219-3116},
  doi={10.1007/s10115-023-01892-9},
  url={https://doi.org/10.1007/s10115-023-01892-9}
}
```

#### Short-Answer Feedback (SAF)

Citation:
```
A. Filighera, S. Parihar, T. Steuer, T. Meuser, and S. Ochs, ‘Your Answer is Incorrect… Would you like to know why? Introducing a Bilingual Short Answer Feedback Dataset’, in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), S. Muresan, P. Nakov, and A. Villavicencio, Eds., Dublin, Ireland: Association for Computational Linguistics, May 2022, pp. 8577–8591. doi: 10.18653/v1/2022.acl-long.587.
```

BibTex:
```
@inproceedings{filighera-etal-2022-answer,
    title = "Your Answer is Incorrect... Would you like to know why? Introducing a Bilingual Short Answer Feedback Dataset",
    author = "Filighera, Anna  and
      Parihar, Siddharth  and
      Steuer, Tim  and
      Meuser, Tobias  and
      Ochs, Sebastian",
    booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
    month = may,
    year = "2022",
    address = "Dublin, Ireland",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2022.acl-long.587",
    pages = "8577--8591",
   }
```

#### Mohler et al.

BibTex:
```
@inproceedings{dataset_mohler,
    title = "Learning to Grade Short Answer Questions using Semantic Similarity Measures and Dependency Graph Alignments",
    author = "Mohler, Michael  and
      Bunescu, Razvan  and
      Mihalcea, Rada",
    editor = "Lin, Dekang  and
      Matsumoto, Yuji  and
      Mihalcea, Rada",
    booktitle = "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
    month = jun,
    year = "2011",
    address = "Portland, Oregon, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/P11-1076",
    pages = "752--762",
}
``` 

#### Beetle II 
```
@article{dataset_beetleII,
  title={BEETLE II: Deep natural language understanding and automatic feedback generation for intelligent tutoring in basic electricity and electronics},
  author={Dzikovska, Myroslava and Steinhauser, Natalie and Farrow, Elaine and Moore, Johanna and Campbell, Gwendolyn},
  journal={International Journal of Artificial Intelligence in Education},
  volume={24},
  pages={284--332},
  year={2014},
  publisher={Springer}
}
```

#### CU-NLP
```
@ARTICLE{dataset_cunlp,
  author={Tulu, Cagatay Neftali and Ozkaya, Ozge and Orhan, Umut},
  journal={IEEE Access}, 
  title={Automatic Short Answer Grading With SemSpace Sense Vectors and MaLSTM}, 
  year={2021},
  volume={9},
  number={},
  pages={19270-19280},
  keywords={Semantics;Natural language processing;Benchmark testing;Long short term memory;Deep learning;Task analysis;Learning systems;Automatic short answer grading;MaLSTM;semspace sense vectors;synset based sense embedding;sentence similarity},
  doi={10.1109/ACCESS.2021.3054346}}

  @inproceedings{dataset_scientsbank,
  title={Annotating Students’ Understanding of Science Concepts},
  author={Rodney D. Nielsen and Wayne H. Ward and James H. Martin and Martha Palmer},
  booktitle={International Conference on Language Resources and Evaluation},
  year={2008},
  url={https://api.semanticscholar.org/CorpusID:12938607}
}
```

<!-- ## Dataset Structure -->

<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->

<!-- [More Information Needed]

## Dataset Creation

### Curation Rationale -->

<!-- Motivation for the creation of this dataset. -->

[More Information Needed]

<!-- ### Source Data -->

<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->

<!-- #### Data Collection and Processing -->

<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->

<!-- [More Information Needed] -->

<!-- #### Who are the source data producers? -->

<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->

<!-- [More Information Needed]

<!-- ## Bias, Risks, and Limitations -->

<!-- This section is meant to convey both technical and sociotechnical limitations. -->

<!-- [More Information Needed] -->

<!-- ### Recommendations -->

<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->

<!-- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. -->

## Citation 
If you use this in your works, please cite: 

Meyer, Gérôme, Philip Breuer, and Jonathan Fürst. "ASAG2024: A Combined Benchmark for Short Answer Grading." arXiv preprint arXiv:2409.18596 (2024).

<!-- **BibTeX:**

[More Information Needed] -->

<!-- **APA:**

[More Information Needed] -->

<!-- ## Glossary [optional] -->

<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->


## Dataset Card Authors

- Gérôme Meyer
- Philip Breuer

## Dataset Card Contact

- E-Mail: [email protected]