Datasets:
File size: 7,070 Bytes
21dd69d 44158bb 21dd69d ee1c23c 21dd69d 353d376 21dd69d 551d8ef 4020fd7 551d8ef 4020fd7 21dd69d ee1c23c 21dd69d ee1c23c 21dd69d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
---
tags:
- ASAG
- Grading
pretty_name: ASAG2024
size_categories:
- 10K<n<100K
---
# Dataset Card for ASAG2024
<!-- Provide a quick summary of the dataset. -->
This is the combined ASAG2024 dataset which consists of various automated grading datasets containing questions, reference answers, provided (student) answers and human grades.
## Dataset Details
### Dataset Description
<!-- Provide a longer summary of what this dataset is. -->
- **Curated by:** Gérôme Meyer
- **Language(s) (NLP):** English
- **License:** Data Source Licenses apply (see below)
### Dataset Sources
This dataset was collected from the sources listed below. If you use this in your work, please make sure to cite the original authors.
#### Stita
Repository: https://github.com/edgresearch/dataset-automaticgrading-2022/tree/master
Citation:
```
del Gobbo, E., Guarino, A., Cafarelli, B. et al. GradeAid: a framework for automatic short answers grading in educational contexts—design, implementation and evaluation. _Knowl Inf Syst_ 65, 4295–4334 (2023). https://doi.org/10.1007/s10115-023-01892-9
```
BibTex:
```
@Article{delGobbo2023,
author={del Gobbo, Emiliano
and Guarino, Alfonso
and Cafarelli, Barbara
and Grilli, Luca},
title={GradeAid: a framework for automatic short answers grading in educational contexts---design, implementation and evaluation},
journal={Knowledge and Information Systems},
year={2023},
month={Oct},
day={01},
volume={65},
number={10},
pages={4295-4334},
issn={0219-3116},
doi={10.1007/s10115-023-01892-9},
url={https://doi.org/10.1007/s10115-023-01892-9}
}
```
#### Short-Answer Feedback (SAF)
Citation:
```
A. Filighera, S. Parihar, T. Steuer, T. Meuser, and S. Ochs, ‘Your Answer is Incorrect… Would you like to know why? Introducing a Bilingual Short Answer Feedback Dataset’, in Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), S. Muresan, P. Nakov, and A. Villavicencio, Eds., Dublin, Ireland: Association for Computational Linguistics, May 2022, pp. 8577–8591. doi: 10.18653/v1/2022.acl-long.587.
```
BibTex:
```
@inproceedings{filighera-etal-2022-answer,
title = "Your Answer is Incorrect... Would you like to know why? Introducing a Bilingual Short Answer Feedback Dataset",
author = "Filighera, Anna and
Parihar, Siddharth and
Steuer, Tim and
Meuser, Tobias and
Ochs, Sebastian",
booktitle = "Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)",
month = may,
year = "2022",
address = "Dublin, Ireland",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.acl-long.587",
pages = "8577--8591",
}
```
#### Mohler et al.
BibTex:
```
@inproceedings{dataset_mohler,
title = "Learning to Grade Short Answer Questions using Semantic Similarity Measures and Dependency Graph Alignments",
author = "Mohler, Michael and
Bunescu, Razvan and
Mihalcea, Rada",
editor = "Lin, Dekang and
Matsumoto, Yuji and
Mihalcea, Rada",
booktitle = "Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies",
month = jun,
year = "2011",
address = "Portland, Oregon, USA",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/P11-1076",
pages = "752--762",
}
```
#### Beetle II
```
@article{dataset_beetleII,
title={BEETLE II: Deep natural language understanding and automatic feedback generation for intelligent tutoring in basic electricity and electronics},
author={Dzikovska, Myroslava and Steinhauser, Natalie and Farrow, Elaine and Moore, Johanna and Campbell, Gwendolyn},
journal={International Journal of Artificial Intelligence in Education},
volume={24},
pages={284--332},
year={2014},
publisher={Springer}
}
```
#### CU-NLP
```
@ARTICLE{dataset_cunlp,
author={Tulu, Cagatay Neftali and Ozkaya, Ozge and Orhan, Umut},
journal={IEEE Access},
title={Automatic Short Answer Grading With SemSpace Sense Vectors and MaLSTM},
year={2021},
volume={9},
number={},
pages={19270-19280},
keywords={Semantics;Natural language processing;Benchmark testing;Long short term memory;Deep learning;Task analysis;Learning systems;Automatic short answer grading;MaLSTM;semspace sense vectors;synset based sense embedding;sentence similarity},
doi={10.1109/ACCESS.2021.3054346}}
@inproceedings{dataset_scientsbank,
title={Annotating Students’ Understanding of Science Concepts},
author={Rodney D. Nielsen and Wayne H. Ward and James H. Martin and Martha Palmer},
booktitle={International Conference on Language Resources and Evaluation},
year={2008},
url={https://api.semanticscholar.org/CorpusID:12938607}
}
```
<!-- ## Dataset Structure -->
<!-- This section provides a description of the dataset fields, and additional information about the dataset structure such as criteria used to create the splits, relationships between data points, etc. -->
<!-- [More Information Needed]
## Dataset Creation
### Curation Rationale -->
<!-- Motivation for the creation of this dataset. -->
[More Information Needed]
<!-- ### Source Data -->
<!-- This section describes the source data (e.g. news text and headlines, social media posts, translated sentences, ...). -->
<!-- #### Data Collection and Processing -->
<!-- This section describes the data collection and processing process such as data selection criteria, filtering and normalization methods, tools and libraries used, etc. -->
<!-- [More Information Needed] -->
<!-- #### Who are the source data producers? -->
<!-- This section describes the people or systems who originally created the data. It should also include self-reported demographic or identity information for the source data creators if this information is available. -->
<!-- [More Information Needed]
<!-- ## Bias, Risks, and Limitations -->
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
<!-- [More Information Needed] -->
<!-- ### Recommendations -->
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
<!-- Users should be made aware of the risks, biases and limitations of the dataset. More information needed for further recommendations. -->
## Citation
If you use this in your works, please cite:
Meyer, Gérôme, Philip Breuer, and Jonathan Fürst. "ASAG2024: A Combined Benchmark for Short Answer Grading." arXiv preprint arXiv:2409.18596 (2024).
<!-- **BibTeX:**
[More Information Needed] -->
<!-- **APA:**
[More Information Needed] -->
<!-- ## Glossary [optional] -->
<!-- If relevant, include terms and calculations in this section that can help readers understand the dataset or dataset card. -->
## Dataset Card Authors
- Gérôme Meyer
- Philip Breuer
## Dataset Card Contact
- E-Mail: [email protected] |