File size: 6,372 Bytes
50d3740 0938ea8 91f0fc7 3cfd544 eedd702 3cfd544 4a8f6e5 3cfd544 4a8f6e5 3cfd544 4a8f6e5 3cfd544 4a8f6e5 3cfd544 eedd702 3cfd544 50d3740 32b0aa1 fffba32 50d3740 4184f5c 32b0aa1 91f0fc7 4184f5c 32b0aa1 91f0fc7 4184f5c 32b0aa1 4184f5c 24c3e35 32b0aa1 4184f5c 32b0aa1 4184f5c 91f0fc7 32b0aa1 4184f5c 32b0aa1 91f0fc7 179b939 91f0fc7 179b939 91f0fc7 4184f5c 32b0aa1 4184f5c 91f0fc7 4184f5c 3547964 4184f5c 00da89f 12a379c 24c3e35 3547964 00da89f 3547964 12a379c 00da89f 12a379c 91f0fc7 4184f5c 91f0fc7 4184f5c 91f0fc7 8737219 4bd7b8b 91f0fc7 4bd7b8b 8737219 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
---
language:
- en
license: apache-2.0
size_categories:
- 10K<n<100K
task_categories:
- question-answering
pretty_name: AQuA-RAT with Calculator
dataset_info:
- config_name: default
features:
- name: id
dtype: string
- name: question
dtype: string
- name: chain
dtype: string
- name: result
dtype: string
- name: options
struct:
- name: A
dtype: string
- name: B
dtype: string
- name: C
dtype: string
- name: D
dtype: string
- name: E
dtype: string
- name: question_without_options
dtype: string
splits:
- name: train
num_bytes: 72917721
num_examples: 94760
- name: validation
num_bytes: 212928
num_examples: 254
- name: test
num_bytes: 206180
num_examples: 254
download_size: 42057527
dataset_size: 73336829
- config_name: original-splits
features:
- name: id
dtype: string
- name: question
dtype: string
- name: chain
dtype: string
- name: result
dtype: string
- name: options
struct:
- name: A
dtype: string
- name: B
dtype: string
- name: C
dtype: string
- name: D
dtype: string
- name: E
dtype: string
- name: question_without_options
dtype: string
splits:
- name: train
num_bytes: 74265737
num_examples: 97467
- name: validation
num_bytes: 212928
num_examples: 254
- name: test
num_bytes: 206180
num_examples: 254
download_size: 42873590
dataset_size: 74684845
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: validation
path: data/validation-*
- split: test
path: data/test-*
- config_name: original-splits
data_files:
- split: train
path: original-splits/train-*
- split: validation
path: original-splits/validation-*
- split: test
path: original-splits/test-*
---
# Dataset Card for Calc-aqua_rat
## Summary
This dataset is an instance of [AQuA-RAT](https://huggingface.co/datasets/aqua_rat) dataset extended with in-context calls of a sympy calculator.
## Supported Tasks
The dataset is intended for training Chain-of-Thought reasoning models able to use external tools to enhance the factuality of their responses.
This dataset presents in-context scenarios where models can outsource the computations in the reasoning chain to a calculator.
## Construction Process
The dataset was constructed automatically by evaluating all candidate calls to a `sympy` library that were extracted from the originally annotated
*rationale*s. The selection of candidates is pivoted by the matching of equals ('=') symbols in the chain, where the left-hand side of the equation is evaluated,
and accepted as a correct gadget call, if the result occurs closely on the right-hand side.
Therefore, the extraction of calculator calls may inhibit false negatives (where the calculator could have been used but was not), but not any known
false positives.
We also perform in-dataset and cross-dataset data-leak detection within the [Calc-X collection](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483). Specifically for AQuA-RAT, we removed a few percent of the train split that were near-duplicates with some of the test or validation examples.
A full description of the extraction process can be found in the [corresponding parse script](https://github.com/prompteus/calc-x/blob/7799a7841940b15593d4667219424ee71c74327e/gadgets/aqua.py#L19),
**If you find an issue in the dataset or in the fresh version of the parsing script, we'd be happy if you report it, or create a PR.**
## Data splits
The dataset with the near-duplicates removed can be loaded in the default config using:
```python
datasets.load_dataset("MU-NLPC/calc-aqua_rat")
```
If you want the unfiltered version, you can use:
```python
datasets.load_dataset("MU-NLPC/calc-aqua_rat", "original-splits")
```
## Attributes
- **id**: an id of the example
- **question**: A natural language definition of the problem to solve, including the options to choose from
- **chain**: A natural language step-by-step solution with automatically inserted calculator calls and outputs of the sympy calculator
- **result**: The correct option (one of A...E)
- **options**: a dictionary with 5 possible options (A, B, C, D and E), among which one is correct
- **question_without_options**: same as **question** but without the options inserted
Attributes **id**, **question**, **chain**, and **result** are present in all datasets in [Calc-X collection](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483).
## Related work
This dataset was created as a part of a larger effort in training models capable of using a calculator during inference, which we call Calcformers.
- [**Calc-X collection**](https://huggingface.co/collections/MU-NLPC/calc-x-652fee9a6b838fd820055483) - datasets for training Calcformers
- [**Calcformers collection**](https://huggingface.co/collections/MU-NLPC/calcformers-65367392badc497807b3caf5) - calculator-using models we trained and published on HF
- [**Calc-X and Calcformers paper**](https://arxiv.org/abs/2305.15017)
- [**Calc-X and Calcformers repo**](https://github.com/prompteus/calc-x)
Here are links to the original dataset:
- [**original AQuA-RAT dataset**](https://huggingface.co/datasets/aqua_rat)
- [**original AQuA-RAT paper**](https://arxiv.org/pdf/1705.04146.pdf)
- [**original AQuA-RAT repo**](https://github.com/google-deepmind/AQuA)
## License
Apache-2.0, consistently with the original aqua-rat dataset.
## Cite
If you use this dataset in research, please cite the original [AQuA-RAT paper](https://arxiv.org/pdf/1705.04146.pdf), and [Calc-X paper](https://arxiv.org/abs/2305.15017) as follows:
```bibtex
@inproceedings{kadlcik-etal-2023-soft,
title = "Calc-X and Calcformers: Empowering Arithmetical Chain-of-Thought through Interaction with Symbolic Systems",
author = "Marek Kadlčík and Michal Štefánik and Ondřej Sotolář and Vlastimil Martinek",
booktitle = "Proceedings of the The 2023 Conference on Empirical Methods in Natural Language Processing: Main track",
month = dec,
year = "2023",
address = "Singapore, Singapore",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/2305.15017",
}
``` |