File size: 3,486 Bytes
522b005
b4872b0
06140ff
 
 
643b589
06140ff
 
522b005
06140ff
 
522b005
 
 
06140ff
 
 
 
522b005
 
 
 
 
 
 
06140ff
e87bd10
06140ff
49118ca
06140ff
 
 
 
 
 
 
 
 
 
 
522b005
 
06140ff
 
 
 
 
 
 
522b005
 
06140ff
 
 
 
 
 
 
522b005
 
 
06140ff
522b005
 
 
 
046975a
522b005
 
 
06140ff
 
 
522b005
4218d99
522b005
 
06140ff
 
 
 
 
522b005
 
046975a
 
 
06140ff
 
 
 
 
 
 
 
 
 
 
 
046975a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# coding=utf-8
# persian-conversational-dataset
"""TODO(empathetic_dialogues): Add a description here."""


import csv,json

import datasets
from datasets.tasks import QuestionAnsweringExtractive



logger = datasets.logging.get_logger(__name__)

_DESCRIPTION = """\
persian-conversational-dataset
"""

_URL = "https://huggingface.co/datasets/Kamtera/Persian-conversational-dataset/blob/main/"
_URLS = [
    "dadrah_dataset.json",
    "dadrah_dataset1-1000_10000.json",
    "dadrah_dataset1-10000_100000.json",
    "dadrah_dataset1-100000_276342.json",
]

class persianConversation(datasets.GeneratorBasedBuilder):

    # VERSION = datasets.Version("0.1.0")

    def _info(self):
        # TODO(empathetic_dialogues): Specifies the datasets.DatasetInfo object
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # datasets.features.FeatureConnectors
            features=datasets.Features(
                {
                    "title": datasets.Value("string"),
                    "question": datasets.Value("string"),
                    "answers": datasets.Sequence(datasets.Value("string")),
                    "keywords": datasets.Sequence(datasets.Value("string")),
                    # These are the features of your dataset like images, labels ...
                }
            ),
            # If there's a common (input, target) tuple from the features,
            # specify them here. They'll be used if as_supervised=True in
            # builder.as_dataset.
            supervised_keys=None,
            
            
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        # TODO(empathetic_dialogues): Downloads the data and defines the splits
        # dl_manager is a datasets.download.DownloadManager that can be used to
        # download and extract URLs
        downloaded_files = dl_manager.download(_URLS)
        logger.info("| > downloaded files")
        logger.info(downloaded_files)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "files": downloaded_files[1:],
                    "split_file": "train",
                },
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                # These kwargs will be passed to _generate_examples
                gen_kwargs={
                    "files": downloaded_files[0:1],
                    "split_file": "test"
                },
            ),
        ]

    def _generate_examples(self, files, split_file):
        """Yields examples."""
        logger.info("| > generate examples for "+split_file)
        logger.info(files)
        for path in files:
            with open(path, 'r', encoding='utf-8') as fmm:
                data=json.load(fmm)
                for id_, row in enumerate(data):
                    title=row[0]
                    question=row[1]
                    answers=row[2]
                    keywords=row[3]
                    if id_==20:
                        break;
                    yield id_, {
                        "title": title,
                        "question": question,
                        "answers": answers,
                        "keywords": keywords,
                    }