system HF staff commited on
Commit
61a0823
1 Parent(s): 1743b7a

Update files from the datasets library (from 1.5.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.5.0

Files changed (2) hide show
  1. dataset_infos.json +1 -1
  2. doc2dial.py +28 -27
dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"dialogue_domain": {"description": "Doc2dial is dataset of goal-oriented dialogues that are grounded in the associated documents. It includes over 4500 annotated conversations with an average of 14 turns that are grounded in over 450 documents from four domains. Compared to the prior document-grounded dialogue datasets this dataset covers a variety of dialogue scenes in information-seeking conversations.\n", "citation": "@inproceedings{feng-etal-2020-doc2dial,\n title = \"doc2dial: A Goal-Oriented Document-Grounded Dialogue Dataset\",\n author = \"Feng, Song and Wan, Hui and Gunasekara, Chulaka and Patel, Siva and Joshi, Sachindra and Lastras, Luis\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.652\",\n}\n", "homepage": "https://doc2dial.github.io/file/doc2dial/", "license": "", "features": {"dial_id": {"dtype": "string", "id": null, "_type": "Value"}, "doc_id": {"dtype": "string", "id": null, "_type": "Value"}, "domain": {"dtype": "string", "id": null, "_type": "Value"}, "turns": [{"turn_id": {"dtype": "int32", "id": null, "_type": "Value"}, "role": {"dtype": "string", "id": null, "_type": "Value"}, "da": {"dtype": "string", "id": null, "_type": "Value"}, "reference": [{"keys": {"dtype": "string", "id": null, "_type": "Value"}, "values": {"dtype": "string", "id": null, "_type": "Value"}}], "utterance": {"dtype": "string", "id": null, "_type": "Value"}}]}, "post_processed": null, "supervised_keys": null, "builder_name": "doc2dial", "config_name": "dialogue_domain", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 8274818, "num_examples": 3471, "dataset_name": "doc2dial"}, "validation": {"name": "validation", "num_bytes": 1548873, "num_examples": 661, "dataset_name": "doc2dial"}}, "download_checksums": {"https://doc2dial.github.io/file/doc2dial.zip": {"num_bytes": 8228534, "checksum": "9143efd9d12ca30b1c772f65102b1c3e77d625fca03e69d316773acea5406786"}}, "download_size": 8228534, "post_processing_size": null, "dataset_size": 9823691, "size_in_bytes": 18052225}, "document_domain": {"description": "Doc2dial is dataset of goal-oriented dialogues that are grounded in the associated documents. It includes over 4500 annotated conversations with an average of 14 turns that are grounded in over 450 documents from four domains. Compared to the prior document-grounded dialogue datasets this dataset covers a variety of dialogue scenes in information-seeking conversations.\n", "citation": "@inproceedings{feng-etal-2020-doc2dial,\n title = \"doc2dial: A Goal-Oriented Document-Grounded Dialogue Dataset\",\n author = \"Feng, Song and Wan, Hui and Gunasekara, Chulaka and Patel, Siva and Joshi, Sachindra and Lastras, Luis\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.652\",\n}\n", "homepage": "https://doc2dial.github.io/file/doc2dial/", "license": "", "features": {"domain": {"dtype": "string", "id": null, "_type": "Value"}, "doc_id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "doc_text": {"dtype": "string", "id": null, "_type": "Value"}, "spans": [{"id_sp": {"dtype": "string", "id": null, "_type": "Value"}, "tag": {"dtype": "string", "id": null, "_type": "Value"}, "start_sp": {"dtype": "int32", "id": null, "_type": "Value"}, "end_sp": {"dtype": "int32", "id": null, "_type": "Value"}, "text_sp": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "parent_titles": {"dtype": "string", "id": null, "_type": "Value"}, "id_sec": {"dtype": "string", "id": null, "_type": "Value"}, "start_sec": {"dtype": "int32", "id": null, "_type": "Value"}, "text_sec": {"dtype": "string", "id": null, "_type": "Value"}, "end_sec": {"dtype": "int32", "id": null, "_type": "Value"}}], "doc_html_ts": {"dtype": "string", "id": null, "_type": "Value"}, "doc_html_raw": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "doc2dial", "config_name": "document_domain", "version": {"version_str": "1.1.0", "description": null, "major": 1, "minor": 1, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 204873921, "num_examples": 3416, "dataset_name": "doc2dial"}}, "download_checksums": {"https://doc2dial.github.io/file/doc2dial.zip": {"num_bytes": 8228534, "checksum": "9143efd9d12ca30b1c772f65102b1c3e77d625fca03e69d316773acea5406786"}}, "download_size": 8228534, "post_processing_size": null, "dataset_size": 204873921, "size_in_bytes": 213102455}}
 
1
+ {"dialogue_domain": {"description": "Doc2dial is dataset of goal-oriented dialogues that are grounded in the associated documents. It includes over 4500 annotated conversations with an average of 14 turns that are grounded in over 450 documents from four domains. Compared to the prior document-grounded dialogue datasets this dataset covers a variety of dialogue scenes in information-seeking conversations.\n", "citation": "@inproceedings{feng-etal-2020-doc2dial,\n title = \"doc2dial: A Goal-Oriented Document-Grounded Dialogue Dataset\",\n author = \"Feng, Song and Wan, Hui and Gunasekara, Chulaka and Patel, Siva and Joshi, Sachindra and Lastras, Luis\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.652\",\n}\n", "homepage": "https://doc2dial.github.io", "license": "", "features": {"dial_id": {"dtype": "string", "id": null, "_type": "Value"}, "doc_id": {"dtype": "string", "id": null, "_type": "Value"}, "domain": {"dtype": "string", "id": null, "_type": "Value"}, "turns": [{"turn_id": {"dtype": "int32", "id": null, "_type": "Value"}, "role": {"dtype": "string", "id": null, "_type": "Value"}, "da": {"dtype": "string", "id": null, "_type": "Value"}, "references": [{"sp_id": {"dtype": "string", "id": null, "_type": "Value"}, "label": {"dtype": "string", "id": null, "_type": "Value"}}], "utterance": {"dtype": "string", "id": null, "_type": "Value"}}]}, "post_processed": null, "supervised_keys": null, "builder_name": "doc2dial", "config_name": "dialogue_domain", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 6924209, "num_examples": 3474, "dataset_name": "doc2dial"}, "validation": {"name": "validation", "num_bytes": 1315815, "num_examples": 661, "dataset_name": "doc2dial"}}, "download_checksums": {"https://doc2dial.github.io/file/doc2dial_v1.0.1.zip": {"num_bytes": 5879543, "checksum": "c764d86628431fc1e54819d687a36f1d00b7ee95b8db2b3a7454149673ca4c17"}}, "download_size": 5879543, "post_processing_size": null, "dataset_size": 8240024, "size_in_bytes": 14119567}, "document_domain": {"description": "Doc2dial is dataset of goal-oriented dialogues that are grounded in the associated documents. It includes over 4500 annotated conversations with an average of 14 turns that are grounded in over 450 documents from four domains. Compared to the prior document-grounded dialogue datasets this dataset covers a variety of dialogue scenes in information-seeking conversations.\n", "citation": "@inproceedings{feng-etal-2020-doc2dial,\n title = \"doc2dial: A Goal-Oriented Document-Grounded Dialogue Dataset\",\n author = \"Feng, Song and Wan, Hui and Gunasekara, Chulaka and Patel, Siva and Joshi, Sachindra and Lastras, Luis\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.652\",\n}\n", "homepage": "https://doc2dial.github.io", "license": "", "features": {"domain": {"dtype": "string", "id": null, "_type": "Value"}, "doc_id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "doc_text": {"dtype": "string", "id": null, "_type": "Value"}, "spans": [{"id_sp": {"dtype": "string", "id": null, "_type": "Value"}, "tag": {"dtype": "string", "id": null, "_type": "Value"}, "start_sp": {"dtype": "int32", "id": null, "_type": "Value"}, "end_sp": {"dtype": "int32", "id": null, "_type": "Value"}, "text_sp": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "parent_titles": {"dtype": "string", "id": null, "_type": "Value"}, "id_sec": {"dtype": "string", "id": null, "_type": "Value"}, "start_sec": {"dtype": "int32", "id": null, "_type": "Value"}, "text_sec": {"dtype": "string", "id": null, "_type": "Value"}, "end_sec": {"dtype": "int32", "id": null, "_type": "Value"}}], "doc_html_ts": {"dtype": "string", "id": null, "_type": "Value"}, "doc_html_raw": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "doc2dial", "config_name": "document_domain", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"train": {"name": "train", "num_bytes": 204874908, "num_examples": 3416, "dataset_name": "doc2dial"}}, "download_checksums": {"https://doc2dial.github.io/file/doc2dial_v1.0.1.zip": {"num_bytes": 5879543, "checksum": "c764d86628431fc1e54819d687a36f1d00b7ee95b8db2b3a7454149673ca4c17"}}, "download_size": 5879543, "post_processing_size": null, "dataset_size": 204874908, "size_in_bytes": 210754451}, "doc2dial_rc": {"description": "Doc2dial is dataset of goal-oriented dialogues that are grounded in the associated documents. It includes over 4500 annotated conversations with an average of 14 turns that are grounded in over 450 documents from four domains. Compared to the prior document-grounded dialogue datasets this dataset covers a variety of dialogue scenes in information-seeking conversations.\n", "citation": "@inproceedings{feng-etal-2020-doc2dial,\n title = \"doc2dial: A Goal-Oriented Document-Grounded Dialogue Dataset\",\n author = \"Feng, Song and Wan, Hui and Gunasekara, Chulaka and Patel, Siva and Joshi, Sachindra and Lastras, Luis\",\n booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\",\n month = nov,\n year = \"2020\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.emnlp-main.652\",\n}\n", "homepage": "https://doc2dial.github.io", "license": "", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "title": {"dtype": "string", "id": null, "_type": "Value"}, "context": {"dtype": "string", "id": null, "_type": "Value"}, "question": {"dtype": "string", "id": null, "_type": "Value"}, "answers": {"feature": {"text": {"dtype": "string", "id": null, "_type": "Value"}, "answer_start": {"dtype": "int32", "id": null, "_type": "Value"}}, "length": -1, "id": null, "_type": "Sequence"}, "domain": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "builder_name": "doc2dial", "config_name": "doc2dial_rc", "version": {"version_str": "1.0.1", "description": null, "major": 1, "minor": 0, "patch": 1}, "splits": {"validation": {"name": "validation", "num_bytes": 22705288, "num_examples": 3972, "dataset_name": "doc2dial"}, "train": {"name": "train", "num_bytes": 114778994, "num_examples": 20431, "dataset_name": "doc2dial"}}, "download_checksums": {"https://doc2dial.github.io/file/doc2dial_v1.0.1.zip": {"num_bytes": 5879543, "checksum": "c764d86628431fc1e54819d687a36f1d00b7ee95b8db2b3a7454149673ca4c17"}}, "download_size": 5879543, "post_processing_size": null, "dataset_size": 137484282, "size_in_bytes": 143363825}}
doc2dial.py CHANGED
@@ -250,34 +250,33 @@ class Doc2dial(datasets.GeneratorBasedBuilder):
250
  data = json.load(f)
251
  for domain in data["doc_data"]:
252
  for doc_id in data["doc_data"][domain]:
253
- for dialogue in data["doc_data"][domain][doc_id]:
254
 
255
- yield doc_id, {
256
- "domain": domain,
257
- "doc_id": doc_id,
258
- "title": data["doc_data"][domain][doc_id]["title"],
259
- "doc_text": data["doc_data"][domain][doc_id]["doc_text"],
260
- "spans": [
261
- {
262
- "id_sp": data["doc_data"][domain][doc_id]["spans"][i]["id_sp"],
263
- "tag": data["doc_data"][domain][doc_id]["spans"][i]["tag"],
264
- "start_sp": data["doc_data"][domain][doc_id]["spans"][i]["start_sp"],
265
- "end_sp": data["doc_data"][domain][doc_id]["spans"][i]["end_sp"],
266
- "text_sp": data["doc_data"][domain][doc_id]["spans"][i]["text_sp"],
267
- "title": data["doc_data"][domain][doc_id]["spans"][i]["title"],
268
- "parent_titles": str(
269
- data["doc_data"][domain][doc_id]["spans"][i]["parent_titles"]
270
- ),
271
- "id_sec": data["doc_data"][domain][doc_id]["spans"][i]["id_sec"],
272
- "start_sec": data["doc_data"][domain][doc_id]["spans"][i]["start_sec"],
273
- "text_sec": data["doc_data"][domain][doc_id]["spans"][i]["text_sec"],
274
- "end_sec": data["doc_data"][domain][doc_id]["spans"][i]["end_sec"],
275
- }
276
- for i in data["doc_data"][domain][doc_id]["spans"]
277
- ],
278
- "doc_html_ts": data["doc_data"][domain][doc_id]["doc_html_ts"],
279
- "doc_html_raw": data["doc_data"][domain][doc_id]["doc_html_raw"],
280
- }
281
 
282
  elif self.config.name == "doc2dial_rc":
283
  """Load dialog data in the reading comprehension task setup, where context is the grounding document,
@@ -301,6 +300,8 @@ class Doc2dial(datasets.GeneratorBasedBuilder):
301
  turn_to_predict = dial["turns"][idx + 1]
302
  else:
303
  continue
 
 
304
  question = " ".join(list(reversed(all_prev_utterances))).strip()
305
  id_ = "{}_{}".format(dial["dial_id"], turn["turn_id"])
306
  qa = {
 
250
  data = json.load(f)
251
  for domain in data["doc_data"]:
252
  for doc_id in data["doc_data"][domain]:
 
253
 
254
+ yield doc_id, {
255
+ "domain": domain,
256
+ "doc_id": doc_id,
257
+ "title": data["doc_data"][domain][doc_id]["title"],
258
+ "doc_text": data["doc_data"][domain][doc_id]["doc_text"],
259
+ "spans": [
260
+ {
261
+ "id_sp": data["doc_data"][domain][doc_id]["spans"][i]["id_sp"],
262
+ "tag": data["doc_data"][domain][doc_id]["spans"][i]["tag"],
263
+ "start_sp": data["doc_data"][domain][doc_id]["spans"][i]["start_sp"],
264
+ "end_sp": data["doc_data"][domain][doc_id]["spans"][i]["end_sp"],
265
+ "text_sp": data["doc_data"][domain][doc_id]["spans"][i]["text_sp"],
266
+ "title": data["doc_data"][domain][doc_id]["spans"][i]["title"],
267
+ "parent_titles": str(
268
+ data["doc_data"][domain][doc_id]["spans"][i]["parent_titles"]
269
+ ),
270
+ "id_sec": data["doc_data"][domain][doc_id]["spans"][i]["id_sec"],
271
+ "start_sec": data["doc_data"][domain][doc_id]["spans"][i]["start_sec"],
272
+ "text_sec": data["doc_data"][domain][doc_id]["spans"][i]["text_sec"],
273
+ "end_sec": data["doc_data"][domain][doc_id]["spans"][i]["end_sec"],
274
+ }
275
+ for i in data["doc_data"][domain][doc_id]["spans"]
276
+ ],
277
+ "doc_html_ts": data["doc_data"][domain][doc_id]["doc_html_ts"],
278
+ "doc_html_raw": data["doc_data"][domain][doc_id]["doc_html_raw"],
279
+ }
280
 
281
  elif self.config.name == "doc2dial_rc":
282
  """Load dialog data in the reading comprehension task setup, where context is the grounding document,
 
300
  turn_to_predict = dial["turns"][idx + 1]
301
  else:
302
  continue
303
+ else:
304
+ continue
305
  question = " ".join(list(reversed(all_prev_utterances))).strip()
306
  id_ = "{}_{}".format(dial["dial_id"], turn["turn_id"])
307
  qa = {