Datasets:
create loading script
Browse files
TGIF.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import csv
|
2 |
+
import datasets
|
3 |
+
import os
|
4 |
+
import urllib.request
|
5 |
+
|
6 |
+
_CITATION = """
|
7 |
+
@InProceedings{tgif-cvpr2016,
|
8 |
+
author = {Li, Yuncheng and Song, Yale and Cao, Liangliang and Tetreault, Joel and Goldberg, Larry and Jaimes, Alejandro and Luo, Jiebo},
|
9 |
+
title = "{TGIF: A New Dataset and Benchmark on Animated GIF Description}",
|
10 |
+
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
|
11 |
+
month = {June},
|
12 |
+
year = {2016}
|
13 |
+
}
|
14 |
+
"""
|
15 |
+
|
16 |
+
_DESCRIPTION = """\
|
17 |
+
The Tumblr GIF (TGIF) dataset contains 100K animated GIFs and 120K sentences describing visual content of the animated GIFs.
|
18 |
+
The animated GIFs have been collected from Tumblr, from randomly selected posts published between May and June of 2015.
|
19 |
+
We provide the URLs of animated GIFs in this release. The sentences are collected via crowdsourcing, with a carefully designed
|
20 |
+
annotationinterface that ensures high quality dataset. We provide one sentence per animated GIF for the training and validation splits,
|
21 |
+
and three sentences per GIF for the test split. The dataset shall be used to evaluate animated GIF/video description techniques.
|
22 |
+
"""
|
23 |
+
|
24 |
+
_URL_BASE = "http://raingo.github.io/TGIF-Release/"
|
25 |
+
|
26 |
+
_DL_URL = "https://github.com/raingo/TGIF-Release/archive/master.zip"
|
27 |
+
|
28 |
+
|
29 |
+
class TGIFConfig(datasets.BuilderConfig):
|
30 |
+
"""BuilderConfig for TGIF."""
|
31 |
+
|
32 |
+
def __init__(self, **kwargs):
|
33 |
+
super(TGIFConfig, self).__init__(
|
34 |
+
version=datasets.Version("2.1.0", ""), **kwargs)
|
35 |
+
|
36 |
+
|
37 |
+
class TGIF(datasets.GeneratorBasedBuilder):
|
38 |
+
|
39 |
+
DEFAULT_CONFIG_NAME = "all"
|
40 |
+
BUILDER_CONFIGS = [
|
41 |
+
TGIFConfig(name="all", description="All the TGIF dataset"),
|
42 |
+
]
|
43 |
+
|
44 |
+
def _info(self):
|
45 |
+
return datasets.DatasetInfo(
|
46 |
+
description=_DESCRIPTION,
|
47 |
+
features=datasets.Features(
|
48 |
+
{
|
49 |
+
"video_path": datasets.Value("string"),
|
50 |
+
"video_bytes": datasets.Value("large_binary"),
|
51 |
+
"en_global_captions": datasets.features.Sequence(datasets.Value("string"))
|
52 |
+
}
|
53 |
+
),
|
54 |
+
supervised_keys=None,
|
55 |
+
homepage=_URL_BASE,
|
56 |
+
citation=_CITATION,
|
57 |
+
)
|
58 |
+
|
59 |
+
def _split_generators(self, dl_manager):
|
60 |
+
archive_path = dl_manager.download_and_extract(_DL_URL)
|
61 |
+
archive_data_path = os.path.join(
|
62 |
+
archive_path, "TGIF-Release-master/data/splits/")
|
63 |
+
infos_file = os.path.join(
|
64 |
+
archive_path, "TGIF-Release-master/data/tgif-v1.0.tsv")
|
65 |
+
|
66 |
+
train_splits = [
|
67 |
+
datasets.SplitGenerator(
|
68 |
+
name=datasets.Split.TRAIN,
|
69 |
+
gen_kwargs={
|
70 |
+
"split_links_file": os.path.join(archive_data_path, "train.txt"),
|
71 |
+
"infos_file": infos_file
|
72 |
+
},
|
73 |
+
)
|
74 |
+
]
|
75 |
+
dev_splits = [
|
76 |
+
datasets.SplitGenerator(
|
77 |
+
name=datasets.Split.VALIDATION,
|
78 |
+
gen_kwargs={
|
79 |
+
"split_links_file": os.path.join(archive_data_path, "val.txt"),
|
80 |
+
"infos_file": infos_file
|
81 |
+
},
|
82 |
+
)
|
83 |
+
]
|
84 |
+
test_splits = [
|
85 |
+
datasets.SplitGenerator(
|
86 |
+
name=datasets.Split.TEST,
|
87 |
+
gen_kwargs={
|
88 |
+
"split_links_file": os.path.join(archive_data_path, "test.txt"),
|
89 |
+
"infos_file": infos_file
|
90 |
+
},
|
91 |
+
)
|
92 |
+
]
|
93 |
+
return train_splits + dev_splits + test_splits
|
94 |
+
|
95 |
+
def _generate_examples(self, split_links_file, infos_file):
|
96 |
+
"""This function returns the examples."""
|
97 |
+
|
98 |
+
dict = {}
|
99 |
+
with open(split_links_file, encoding="utf-8") as txt_file:
|
100 |
+
for line in txt_file:
|
101 |
+
line = line[0:-1]
|
102 |
+
dict[line] = []
|
103 |
+
with open(infos_file, encoding="utf-8") as tsv_file:
|
104 |
+
tsv_reader = csv.reader(tsv_file, delimiter="\t", quotechar='"')
|
105 |
+
for idx, (video_link, text) in enumerate(tsv_reader):
|
106 |
+
try:
|
107 |
+
dict[video_link].append(text)
|
108 |
+
except Exception:
|
109 |
+
pass
|
110 |
+
for idx, video_link in enumerate(dict):
|
111 |
+
video_data = urllib.request.urlopen(video_link).read()
|
112 |
+
video_bytes = bytearray(video_data)
|
113 |
+
yield idx, {
|
114 |
+
"video_path": video_link,
|
115 |
+
"video_bytes": video_bytes,
|
116 |
+
"en_global_captions": dict[video_link],
|
117 |
+
}
|