Datasets:
add script and readme
Browse files- README.md +187 -1
- euscrawl.py +99 -0
README.md
CHANGED
@@ -1,3 +1,189 @@
|
|
1 |
---
|
2 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
annotations_creators:
|
3 |
+
- no-annotation
|
4 |
+
language:
|
5 |
+
- eu
|
6 |
+
language_creators:
|
7 |
+
- found
|
8 |
+
license:
|
9 |
+
- cc
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
pretty_name: EusCrawl
|
13 |
+
size_categories:
|
14 |
+
- 10M<n<100M
|
15 |
+
source_datasets:
|
16 |
+
- original
|
17 |
+
tags:
|
18 |
+
- high-quality
|
19 |
+
- scraping
|
20 |
+
task_categories:
|
21 |
+
- text-generation
|
22 |
+
- fill-mask
|
23 |
+
task_ids:
|
24 |
+
- language-modeling
|
25 |
+
- masked-language-modeling
|
26 |
+
dataset_info:
|
27 |
+
features:
|
28 |
+
- name: id
|
29 |
+
dtype: int32
|
30 |
+
- name: title
|
31 |
+
dtype: string
|
32 |
+
- name: text
|
33 |
+
dtype: string
|
34 |
+
- name: source
|
35 |
+
dtype: string
|
36 |
+
- name: license
|
37 |
+
dtype: string
|
38 |
+
- name: url
|
39 |
+
dtype: string
|
40 |
+
splits:
|
41 |
+
- name: train
|
42 |
+
num_bytes: 2314407002
|
43 |
+
num_examples: 1724544
|
44 |
+
download_size: 728281801
|
45 |
+
dataset_size: 2314407002
|
46 |
---
|
47 |
+
|
48 |
+
# Dataset Card for EusCrawl
|
49 |
+
|
50 |
+
## Table of Contents
|
51 |
+
- [Table of Contents](#table-of-contents)
|
52 |
+
- [Dataset Description](#dataset-description)
|
53 |
+
- [Dataset Summary](#dataset-summary)
|
54 |
+
- [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
|
55 |
+
- [Languages](#languages)
|
56 |
+
- [Dataset Structure](#dataset-structure)
|
57 |
+
- [Data Instances](#data-instances)
|
58 |
+
- [Data Fields](#data-fields)
|
59 |
+
- [Data Splits](#data-splits)
|
60 |
+
- [Dataset Creation](#dataset-creation)
|
61 |
+
- [Curation Rationale](#curation-rationale)
|
62 |
+
- [Source Data](#source-data)
|
63 |
+
- [Annotations](#annotations)
|
64 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
65 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
66 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
67 |
+
- [Discussion of Biases](#discussion-of-biases)
|
68 |
+
- [Other Known Limitations](#other-known-limitations)
|
69 |
+
- [Additional Information](#additional-information)
|
70 |
+
- [Dataset Curators](#dataset-curators)
|
71 |
+
- [Licensing Information](#licensing-information)
|
72 |
+
- [Citation Information](#citation-information)
|
73 |
+
- [Contributions](#contributions)
|
74 |
+
|
75 |
+
## Dataset Description
|
76 |
+
|
77 |
+
- **Homepage:** https://ixa.ehu.eus/euscrawl/
|
78 |
+
- **Repository:**
|
79 |
+
- **Paper:** https://arxiv.org/abs/2203.08111
|
80 |
+
- **Leaderboard:**
|
81 |
+
- **Point of Contact:** [email protected]
|
82 |
+
|
83 |
+
### Dataset Summary
|
84 |
+
|
85 |
+
EusCrawl (http://www.ixa.eus/euscrawl/) is a high-quality corpus for
|
86 |
+
Basque comprising 12.5 million documents and 423 million tokens,
|
87 |
+
totalling 2.1 GiB of uncompressed text. EusCrawl was built using
|
88 |
+
ad-hoc scrapers to extract text from 33 Basque websites with
|
89 |
+
high-quality content, resulting in cleaner text compared to general
|
90 |
+
purpose approaches.
|
91 |
+
|
92 |
+
### Supported Tasks and Leaderboards
|
93 |
+
|
94 |
+
EusCrawlis intended for pretarining models for language modeling or masked language modeling.
|
95 |
+
|
96 |
+
### Languages
|
97 |
+
|
98 |
+
Basque (eu)
|
99 |
+
|
100 |
+
## Dataset Structure
|
101 |
+
|
102 |
+
### Data Instances
|
103 |
+
|
104 |
+
[More Information Needed]
|
105 |
+
|
106 |
+
### Data Fields
|
107 |
+
|
108 |
+
[More Information Needed]
|
109 |
+
|
110 |
+
### Data Splits
|
111 |
+
|
112 |
+
[More Information Needed]
|
113 |
+
|
114 |
+
## Dataset Creation
|
115 |
+
|
116 |
+
### Curation Rationale
|
117 |
+
|
118 |
+
[More Information Needed]
|
119 |
+
|
120 |
+
### Source Data
|
121 |
+
|
122 |
+
#### Initial Data Collection and Normalization
|
123 |
+
|
124 |
+
[More Information Needed]
|
125 |
+
|
126 |
+
#### Who are the source language producers?
|
127 |
+
|
128 |
+
[More Information Needed]
|
129 |
+
|
130 |
+
### Annotations
|
131 |
+
|
132 |
+
#### Annotation process
|
133 |
+
|
134 |
+
[More Information Needed]
|
135 |
+
|
136 |
+
#### Who are the annotators?
|
137 |
+
|
138 |
+
[More Information Needed]
|
139 |
+
|
140 |
+
### Personal and Sensitive Information
|
141 |
+
|
142 |
+
[More Information Needed]
|
143 |
+
|
144 |
+
## Considerations for Using the Data
|
145 |
+
|
146 |
+
### Social Impact of Dataset
|
147 |
+
|
148 |
+
[More Information Needed]
|
149 |
+
|
150 |
+
### Discussion of Biases
|
151 |
+
|
152 |
+
[More Information Needed]
|
153 |
+
|
154 |
+
### Other Known Limitations
|
155 |
+
|
156 |
+
[More Information Needed]
|
157 |
+
|
158 |
+
## Additional Information
|
159 |
+
|
160 |
+
### Dataset Curators
|
161 |
+
|
162 |
+
[More Information Needed]
|
163 |
+
|
164 |
+
### Licensing Information
|
165 |
+
|
166 |
+
We do not claim ownership of any document in the corpus. All documents
|
167 |
+
we collected were published under a Creative Commons license in their
|
168 |
+
original website, and the specific variant can be found in the
|
169 |
+
"license" field of each document. Should you consider
|
170 |
+
that our data contains material that is owned by you and you would not
|
171 |
+
like to be reproduced here, please contact Aitor Soroa at
|
172 | |
173 |
+
|
174 |
+
### Citation Information
|
175 |
+
|
176 |
+
If you use our corpus or models for academic research, please cite the paper in question:
|
177 |
+
@misc{artetxe2022euscrawl,
|
178 |
+
title={Does corpus quality really matter for low-resource languages?},
|
179 |
+
author={Mikel Artetxe, Itziar Aldabe, Rodrigo Agerri,
|
180 |
+
Olatz Perez-de-Viñaspre, Aitor Soroa},
|
181 |
+
year={2022},
|
182 |
+
eprint={2203.08111},
|
183 |
+
archivePrefix={arXiv},
|
184 |
+
primaryClass={cs.CL}
|
185 |
+
}
|
186 |
+
|
187 |
+
### Contributions
|
188 |
+
|
189 |
+
Thanks to [@juletx](https://github.com/juletx) for adding this dataset.
|
euscrawl.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""EusCrawl dataset."""
|
2 |
+
|
3 |
+
import json
|
4 |
+
import datasets
|
5 |
+
|
6 |
+
|
7 |
+
_DESCRIPTION = """\
|
8 |
+
EusCrawl (http://www.ixa.eus/euscrawl/) is a high-quality corpus for
|
9 |
+
Basque comprising 12.5 million documents and 423 million tokens,
|
10 |
+
totalling 2.1 GiB of uncompressed text. EusCrawl was built using
|
11 |
+
ad-hoc scrapers to extract text from 33 Basque websites with
|
12 |
+
high-quality content, resulting in cleaner text compared to general
|
13 |
+
purpose approaches.
|
14 |
+
|
15 |
+
We do not claim ownership of any document in the corpus. All documents
|
16 |
+
we collected were published under a Creative Commons license in their
|
17 |
+
original website, and the specific variant can be found in the
|
18 |
+
"license" field of each document. Should you consider
|
19 |
+
that our data contains material that is owned by you and you would not
|
20 |
+
like to be reproduced here, please contact Aitor Soroa at
|
21 | |
22 |
+
|
23 |
+
For more details about the corpus, refer to our paper "Artetxe M.,
|
24 |
+
Aldabe I., Agerri R., Perez-de-Viñaspre O, Soroa A. (2022). Does
|
25 |
+
Corpus Quality Really Matter for Low-Resource Languages?"
|
26 |
+
https://arxiv.org/abs/2203.08111
|
27 |
+
|
28 |
+
If you use our corpus or models for academic research, please cite the paper in question:
|
29 |
+
@misc{artetxe2022euscrawl,
|
30 |
+
title={Does corpus quality really matter for low-resource languages?},
|
31 |
+
author={Mikel Artetxe, Itziar Aldabe, Rodrigo Agerri, Olatz Perez-de-Viñaspre, Aitor Soroa},
|
32 |
+
year={2022},
|
33 |
+
eprint={2203.08111},
|
34 |
+
archivePrefix={arXiv},
|
35 |
+
primaryClass={cs.CL}
|
36 |
+
}
|
37 |
+
|
38 |
+
For questions please contact Aitor Soroa at [email protected].
|
39 |
+
"""
|
40 |
+
_HOMEPAGE_URL = "https://ixa.ehu.eus/euscrawl/"
|
41 |
+
_CITATION = """\
|
42 |
+
@misc{artetxe2022euscrawl,
|
43 |
+
title={Does corpus quality really matter for low-resource languages?},
|
44 |
+
author={Mikel Artetxe, Itziar Aldabe, Rodrigo Agerri,
|
45 |
+
Olatz Perez-de-Viñaspre, Aitor Soroa},
|
46 |
+
year={2022},
|
47 |
+
eprint={2203.08111},
|
48 |
+
archivePrefix={arXiv},
|
49 |
+
primaryClass={cs.CL}
|
50 |
+
}
|
51 |
+
"""
|
52 |
+
|
53 |
+
_URL = "http://ixa.ehu.eus/euscrawl/files/euscrawl-v1-free-jsonl.tar.bz2"
|
54 |
+
_FILEPATH = "euscrawl-v1-free-jsonl/euscrawl-v1.free.jsonl"
|
55 |
+
|
56 |
+
|
57 |
+
class EusCrawl(datasets.GeneratorBasedBuilder):
|
58 |
+
def _info(self):
|
59 |
+
return datasets.DatasetInfo(
|
60 |
+
description=_DESCRIPTION,
|
61 |
+
features=datasets.Features(
|
62 |
+
{
|
63 |
+
"id": datasets.Value("int32"),
|
64 |
+
"title": datasets.Value("string"),
|
65 |
+
"text": datasets.Value("string"),
|
66 |
+
"source": datasets.Value("string"),
|
67 |
+
"license": datasets.Value("string"),
|
68 |
+
"url": datasets.Value("string"),
|
69 |
+
},
|
70 |
+
),
|
71 |
+
supervised_keys=None,
|
72 |
+
homepage=_HOMEPAGE_URL,
|
73 |
+
citation=_CITATION,
|
74 |
+
)
|
75 |
+
|
76 |
+
def _split_generators(self, dl_manager):
|
77 |
+
path = dl_manager.download_and_extract(_URL)
|
78 |
+
filepath = f"{path}/{_FILEPATH}"
|
79 |
+
return [
|
80 |
+
datasets.SplitGenerator(
|
81 |
+
name=datasets.Split.TRAIN,
|
82 |
+
gen_kwargs={"filepath": filepath},
|
83 |
+
)
|
84 |
+
]
|
85 |
+
|
86 |
+
def _generate_examples(self, filepath):
|
87 |
+
with open(filepath, encoding="utf-8") as f:
|
88 |
+
for id, line in enumerate(f):
|
89 |
+
data = json.loads(line)
|
90 |
+
|
91 |
+
# defaut to empty string if field is missing
|
92 |
+
yield id, {
|
93 |
+
"id": id,
|
94 |
+
"title": data.get("title", ""),
|
95 |
+
"text": data.get("text", ""),
|
96 |
+
"source": data.get("source", ""),
|
97 |
+
"license": data.get("license", ""),
|
98 |
+
"url": data.get("url", ""),
|
99 |
+
}
|