File size: 3,221 Bytes
958be8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
# coding=utf-8
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""IMDB movie reviews dataset."""

import datasets


_DESCRIPTION = """
"""

_CITATION = """
"""

_DOWNLOAD_URL = "aclImdb_v1.tar.gz"


class IMDBReviewsConfig(datasets.BuilderConfig):
    """BuilderConfig for IMDBReviews."""

    def __init__(self, **kwargs):
        """BuilderConfig for IMDBReviews.
        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(IMDBReviewsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs)


class Imdb(datasets.GeneratorBasedBuilder):
    """IMDB movie reviews dataset."""

    BUILDER_CONFIGS = [
        IMDBReviewsConfig(
            name="plain_text",
            description="Plain text",
        )
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {"text": datasets.Value("string"), "label": datasets.features.ClassLabel(names=["neg", "pos"])}
            ),
            supervised_keys=None,
            homepage="http://ai.stanford.edu/~amaas/data/sentiment/",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        archive = dl_manager.download(_DOWNLOAD_URL)
        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "train"}
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST, gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "test"}
            ),
            datasets.SplitGenerator(
                name=datasets.Split("unsupervised"),
                gen_kwargs={"files": dl_manager.iter_archive(archive), "split": "train", "labeled": False},
            ),
        ]

    def _generate_examples(self, files, split, labeled=True):
        """Generate aclImdb examples."""
        # For labeled examples, extract the label from the path.
        if labeled:
            label_mapping = {"pos": 1, "neg": 0}
            for path, f in files:
                if path.startswith(f"aclImdb/{split}"):
                    label = label_mapping.get(path.split("/")[2])
                    if label is not None:
                        yield path, {"text": f.read().decode("utf-8"), "label": label}
        else:
            for path, f in files:
                if path.startswith(f"aclImdb/{split}"):
                    if path.split("/")[2] == "unsup":
                        yield path, {"text": f.read().decode("utf-8"), "label": -1}