---
language:
- code
- en
multilinguality:
- multiprogramming languages
task_categories:
- text-generation
license: mit
dataset_info:
features:
- name: identifier
dtype: string
- name: return_type
dtype: string
- name: repo
dtype: string
- name: path
dtype: string
- name: language
dtype: string
- name: code
dtype: string
- name: code_tokens
dtype: string
- name: original_docstring
dtype: string
- name: comment
dtype: string
- name: docstring_tokens
dtype: string
- name: docstring
dtype: string
- name: original_string
dtype: string
pretty_name: The Vault Function
viewer: true
---
## Table of Contents
- [Dataset Description](#dataset-description)
- [Dataset Summary](#dataset-summary)
- [Supported Tasks](#supported-tasks)
- [Languages](#languages)
- [Dataset Structure](#dataset-structure)
- [Data Instances](#data-instances)
- [Data Fields](#data-fields)
- [Data Splits](#data-splits)
- [Dataset Statistics](#dataset-statistics)
- [Usage](#usage)
- [Additional Information](#additional-information)
- [Licensing Information](#licensing-information)
- [Citation Information](#citation-information)
- [Contributions](#contributions)
## Dataset Description
- **Repository:** [FSoft-AI4Code/TheVault](https://github.com/FSoft-AI4Code/TheVault)
- **Paper:** [The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation](https://arxiv.org/abs/2305.06156)
- **Contact:** support.ailab@fpt.com
- **Website:** https://www.fpt-aicenter.com/ai-residency/
# The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation
## Dataset Summary
The Vault dataset is a comprehensive, large-scale, multilingual parallel dataset that features high-quality code-text pairs derived from The Stack, the largest permissively-licensed source code dataset.
We provide The Vault which contains code snippets from 10 popular programming languages such as Java, JavaScript, Python, Ruby, Rust, Golang, C#, C++, C, and PHP. This dataset provides multiple code-snippet levels, metadata, and 11 docstring styles for enhanced usability and versatility.
## Supported Tasks
The Vault can be used for pretraining LLMs or downstream code-text interaction tasks. A number of tasks related to code understanding and geneartion can be constructed using The Vault such as *code summarization*, *text-to-code generation* and *code search*.
## Languages
The natural language text (docstring) is in English.
10 programming languages are supported in The Vault: `Python`, `Java`, `JavaScript`, `PHP`, `C`, `C#`, `C++`, `Go`, `Ruby`, `Rust`
## Dataset Structure
### Data Instances
```
{
"hexsha": "ee1cf38808d3db0ea364b049509a01a65e6e5589",
"repo": "Waguy02/Boomer-Scripted",
"path": "python/subprojects/testbed/mlrl/testbed/persistence.py",
"license": [
"MIT"
],
"language": "Python",
"identifier": "__init__",
"code": "def __init__(self, model_dir: str):\n \"\"\"\n :param model_dir: The path of the directory where models should be saved\n \"\"\"\n self.model_dir = model_dir",
"code_tokens": [
"def",
"__init__",
"(",
"self",
",",
"model_dir",
":",
"str",
")",
":",
"\"\"\"\n :param model_dir: The path of the directory where models should be saved\n \"\"\"",
"self",
".",
"model_dir",
"=",
"model_dir"
],
"original_comment": "\"\"\"\n :param model_dir: The path of the directory where models should be saved\n \"\"\"",
"comment": ":param model_dir: The path of the directory where models should be saved",
"comment_tokens": [
":",
"param",
"model_dir",
":",
"The",
"path",
"of",
"the",
"directory",
"where",
"models",
"should",
"be",
"saved"
],
"start_point": [
1,
8
],
"end_point": [
3,
11
],
"prev_context": {
"code": null,
"start_point": null,
"end_point": null
},
"next_context": {
"code": "self.model_dir = model_dir",
"start_point": [
4,
8
],
"end_point": [
4,
34
]
}
}
```
### Data Fields
Data fields for inline level:
- **hexsha** (string): the unique git hash of file
- **repo** (string): the owner/repo
- **path** (string): the full path to the original file
- **license** (list): licenses in the repo
- **language** (string): the programming language
- **identifier** (string): the function or method name
- **code** (string): the part of the original that is code
- **code_tokens** (list): tokenized version of `code`
- **original_comment** (string): original text of comment ,
- **comment** (string): clean version of comment,
- **comment_tokens** (list): tokenized version of `comment`,
- **start_point** (int): start position of `original_comment` in `code`,
- **end_point** (int): end position of `original_comment` in `code`,
- **prev_context** (dict): block of code before `original_comment`,
- **next_context** (dict): block of code after `original_comment`
### Data Splits
In this repo, the inline level data is not split, and contained in only train set.
## Dataset Statistics
| Languages | Number of inline comments |
|:-----------|---------------------------:|
|Python | 14,013,238 |
|Java | 17,062,277 |
|JavaScript | 1,438,110 |
|PHP | 5,873,744 |
|C | 6,778,239 |
|C# | 6,274,389 |
|C++ | 10,343,650 |
|Go | 4,390,342 |
|Ruby | 767,563 |
|Rust | 2,063,784 |
|TOTAL | **69,005,336** |
## Usage
You can load The Vault dataset using datasets library: ```pip install datasets```
```python
from datasets import load_dataset
# Load full inline level dataset (69M samples)
dataset = load_dataset("Fsoft-AIC/the-vault-inline")
# specific language (e.g. Python)
dataset = load_dataset("Fsoft-AIC/the-vault-inline", languages=['Python'])
# dataset streaming
data = load_dataset("Fsoft-AIC/the-vault-inline", streaming= True)
for sample in iter(data['train']):
print(sample)
```
## Additional information
### Licensing Information
MIT License
### Citation Information
```
@article{manh2023vault,
title={The Vault: A Comprehensive Multilingual Dataset for Advancing Code Understanding and Generation},
author={Manh, Dung Nguyen and Hai, Nam Le and Dau, Anh TV and Nguyen, Anh Minh and Nghiem, Khanh and Guo, Jin and Bui, Nghi DQ},
journal={arXiv preprint arXiv:2305.06156},
year={2023}
}
```
### Contributions
This dataset is developed by [FSOFT AI4Code team](https://github.com/FSoft-AI4Code).